2,426 research outputs found

    Precessionless spin transport wire confined in quasi-two-dimensional electron systems

    Full text link
    We demonstrate that in an inversion-asymmetric two-dimensional electron system 2DES with both Rashba and Dresselhaus spin-orbit couplings taken into account, certain transport directions on which no spin precession occurs can be found when the injected spin is properly polarized. By analyzing the expectation value of spin with respect to the injected electron state on each space point in the 2DES, we further show that the adjacent regions with technically reachable widths along these directions exhibit nearly conserved spin. Hence a possible application in semiconductor spintronics, namely, precessionless spin transport wire, is proposed.Comment: 3 pages, 4 figures, to be appeared in Journal of Applied Physics, Proceedings of the 50th MMM Conferenc

    Datta-Das transistor: Significance of channel direction, size-dependence of source contacts, and boundary effects

    Full text link
    We analyze the spin expectation values for injected spin-polarized electrons (spin vectors) in a [001]-grown Rashba-Dresselhaus two-dimensional electron gas (2DEG). We generalize the calculation for point spin injection in semi-infinite 2DEGs to finite-size spin injection in bounded 2DEGs. Using the obtained spin vector formula, significance of the channel direction for the Datta-Das transistor is illustrated. Numerical results indicate that the influence due to the finite-size injection is moderate, while the channel boundary reflection may bring unexpected changes. Both effects are concluded to decrease when the spin-orbit coupling strength is strong. Hence [110] is a robust channel direction and is therefore the best candidate for the design of the Datta-Das transistor.Comment: 5 pages, 4 figures, accepted for publication in Physical Review

    Spin and charge pumping in magnetic tunnel junctions with precessing magnetization: A nonequilibrium Green function approach

    Full text link
    We study spin and charge currents pumped by precessing magnetization of a single ferromagnetic layer within F|I|N or F|I|F (F-ferromagnet; I-insulator; N-normal-metal) multilayers of nanoscale thickness attached to two normal metal electrodes with no applied bias voltage between them. Both simple one-dimensional model, consisting of a single precessing spin and a potential barrier as the "sample," and realistic three-dimensional devices are investigated. In the rotating reference frame, where the magnetization appears to be static, these junctions are mapped onto a four-terminal dc circuit whose effectively half-metallic ferromagnetic electrodes are biased by the frequency ω/e\hbar \omega/e of microwave radiation driving magnetization precession at the ferromagnetic resonance (FMR) conditions. We show that pumped spin current in F|I|F junctions, diminished behind the tunnel barrier and increased in the opposite direction, is filtered into charge current by the second FF layer to generate dc pumping voltage of the order of 1\sim 1 μ\muV (at FMR frequency 10\sim 10 GHz) in an open circuit. In F|I|N devices, several orders of magnitude smaller charge current and the corresponding dc voltage appear concomitantly with the pumped spin current due to barrier induced asymmetry in the transmission coefficients connecting the four electrodes in the rotating frame picture of pumping.Comment: 8 pages, 5 figure

    Spin precession due to spin-orbit coupling in a two-dimensional electron gas with spin injection via ideal quantum point contact

    Full text link
    We present the analytical result of the expectation value of spin resulting from an injected spin polarized electron into a semi-infinitely extended 2DEG plane with [001] growth geometry via ideal quantum point contact. Both the Rashba and Dresselhaus spin-orbit couplings are taken into account. A pictorial interpretation of the spin precession along certain transport directions is given. The spin precession due to the Rashba term is found to be especially interesting since it behaves simply like a windshield wiper which is very different from the ordinary precession while that due to the Dresselhaus term is shown to be crystallographic-direction-dependent. Some crystallographic directions with interesting and handleable behavior of spin precession are found and may imply certain applicability in spintronic devices.Comment: 5 pages, 2 figures, submitted to Phys. Rev.

    Projectile Δ\Delta Excitations in p(p,n)Nπp(p,n)N\pi Reactions

    Full text link
    It has recently been proven from measurements of the spin-transfer coefficients DxxD_{xx} and DzzD_{zz} that there is a small but non-vanishing ΔS=0\Delta S=0 component σ0\sigma_{0}, in the inclusive p(p,n)Nπp(p,n)N\pi\, reaction cross section σ\sigma\,. It is shown that the dominant part of the measured σ0\sigma_{0} can be explained in terms of the projectile Δ\Delta excitation mechanism. An estimate is further made of contributions to σ0\sigma_{0} from s-wave rescattering process. It is found that s-wave rescattering contribution is much smaller than the contribution coming from projectile Δ\Delta excitation mechanism. The addition of s-wave rescattering contribution to the dominant part, however, improves the fit to the data.Comment: 9 pages, Revtex, figures can be obtained upon reques

    Local spin density in two-dimensional electron gas with hexagonal boundary

    Full text link
    The intrinsic spin-Hall effect in hexagon-shaped samples is investigated. To take into account the spin-orbit couplings and to fit the hexagon edges, we derive the triangular version of the tight-binding model for the linear Rashba [Sov. Phys. Solid State 2, 1109 (1960)] and Dresselhaus [Phys. Rev. 100, 580 (1955)] [001] Hamiltonians, which allow direct application of the Landauer-Keldysh non-equilibrium Green function formalism to calculating the local spin density within the hexagonal sample. Focusing on the out-of-plane component of spin, we obtain the geometry-dependent spin-Hall accumulation patterns, which are sensitive to not only the sample size, the spin-orbit coupling strength, the bias strength, but also the lead configurations. Contrary to the rectangular samples, the accumulation pattern can be very different in our hexagonal samples. Our present work provides a fundamental description of the geometry effect on the intrinsic spin-Hall effect, taking the hexagon as the specific case. Moreover, broken spin-Hall symmetry due to the coexistence of the Rashba and Dresselhaus couplings is also discussed. Upon exchanging the two coupling strengths, the accumulation pattern is reversed, confirming the earlier predicted sign change in spin-Hall conductivity.Comment: 7 pages, 4 figure

    Trends and emissions of six perfluorocarbons in the Northern Hemisphere and Southern Hemisphere

    Get PDF
    Perfluorocarbons (PFCs) are potent greenhouse gases with global warming potentials up to several thousand times greater than CO2 on a 100-year time horizon. The lack of any significant sinks for PFCs means that they have long atmospheric lifetimes of the order of thousands of years. Anthropogenic production is thought to be the only source for most PFCs. Here we report an update on the global atmospheric abundances of the following PFCs, most of which have for the first time been analytically separated according to their isomers: c-octafluorobutane (c-C4F8), n-decafluorobutane (n-C4F10), n-dodecafluoropentane (n-C5F12), n-tetradecafluorohexane (n-C6F14), and n-hexadecafluoroheptane (n-C7F16). Additionally, we report the first data set on the atmospheric mixing ratios of perfluoro-2-methylpentane (i-C6F14). The existence and significance of PFC isomers have not been reported before, due to the analytical challenges of separating them. The time series spans a period from 1978 to the present. Several data sets are used to investigate temporal and spatial trends of these PFCs: time series of air samples collected at Cape Grim, Australia, from 1978 to the start of 2018; a time series of air samples collected between July 2015 and April 2017 at Tacolneston, UK; and intensive campaign-based sampling collections from Taiwan. Although the remote “background” Southern Hemispheric Cape Grim time series indicates that recent growth rates of most of these PFCs are lower than in the 1990s, we continue to see significantly increasing mixing ratios that are between 6 % and 27 % higher by the end of 2017 compared to abundances measured in 2010. Air samples from Tacolneston show a positive offset in PFC mixing ratios compared to the Southern Hemisphere baseline. The highest mixing ratios and variability are seen in air samples from Taiwan, which is therefore likely situated much closer to PFC sources, confirming predominantly Northern Hemispheric emissions for most PFCs. Even though these PFCs occur in the atmosphere at levels of parts per trillion molar or less, their total cumulative global emissions translate into 833 million metric tonnes of CO2 equivalent by the end of 2017, 23 % of which has been emitted since 2010. Almost two-thirds of the CO2 equivalent emissions within the last decade are attributable to c-C4F8, which currently also has the highest emission rates that continue to grow. Sources of all PFCs covered in this work remain poorly constrained and reported emissions in global databases do not account for the abundances found in the atmosphere

    PEER Testbed Study on a Laboratory Building: Exercising Seismic Performance Assessment

    Get PDF
    From 2002 to 2004 (years five and six of a ten-year funding cycle), the PEER Center organized the majority of its research around six testbeds. Two buildings and two bridges, a campus, and a transportation network were selected as case studies to “exercise” the PEER performance-based earthquake engineering methodology. All projects involved interdisciplinary teams of researchers, each producing data to be used by other colleagues in their research. The testbeds demonstrated that it is possible to create the data necessary to populate the PEER performancebased framing equation, linking the hazard analysis, the structural analysis, the development of damage measures, loss analysis, and decision variables. This report describes one of the building testbeds—the UC Science Building. The project was chosen to focus attention on the consequences of losses of laboratory contents, particularly downtime. The UC Science testbed evaluated the earthquake hazard and the structural performance of a well-designed recently built reinforced concrete laboratory building using the OpenSees platform. Researchers conducted shake table tests on samples of critical laboratory contents in order to develop fragility curves used to analyze the probability of losses based on equipment failure. The UC Science testbed undertook an extreme case in performance assessment—linking performance of contents to operational failure. The research shows the interdependence of building structure, systems, and contents in performance assessment, and highlights where further research is needed. The Executive Summary provides a short description of the overall testbed research program, while the main body of the report includes summary chapters from individual researchers. More extensive research reports are cited in the reference section of each chapter

    A Conformal Field Theory for Eternal Inflation

    Full text link
    We study a statistical model defined by a conformally invariant distribution of overlapping spheres in arbitrary dimension d. The model arises as the asymptotic distribution of cosmic bubbles in d+1 dimensional de Sitter space, and also as the asymptotic distribution of bubble collisions with the domain wall of a fiducial "observation bubble" in d+2 dimensional de Sitter space. In this note we calculate the 2-,3-, and 4-point correlation functions of exponentials of the "bubble number operator" analytically in d=2. We find that these correlators, when carefully defined, are free of infrared divergences, covariant under the global conformal group, charge conserving, and transform with positive conformal dimensions that are related in a novel way to the charge. Although by themselves these operators probably do not define a full-fledged conformal field theory, one can use the partition function on a sphere to compute an approximate central charge in the 2D case. The theory in any dimension has a noninteracting limit when the nucleation rate of the bubbles in the bulk is very large. The theory in two dimensions is related to some models of continuum percolation, but it is conformal for all values of the tunneling rate.Comment: 30 pages, 8 figure

    Spin-charge conversion in multiterminal Aharonov-Casher ring coupled to precessing ferromagnets: A charge conserving Floquet-nonequilibrium Green function approach

    Full text link
    We derive a non-perturbative solution to the Floquet-nonequilibrium Green function (Floquet-NEGF) describing open quantum systems periodically driven by an external field of arbitrary strength of frequency. By adopting the reduced-zone scheme, we obtain expressions rendering conserved charge currents for any given maximum number of photons, distinguishable from other existed Floquet-NEGF-based expressions where, less feasible, infinite number of photons needed to be taken into account to ensure the conservation. To justify our derived formalism and to investigate spin-charge conversions by spin-orbit coupling (SOC), we consider the spin-driven setups as reciprocal to the electric-driven setups in S. Souma et. al., Phys. Rev. B 70, 195346 (2004) and Phys. Rev. Lett. 94, 106602 (2005). In our setups, pure spin currents are driven by the magnetization dynamics of a precessing ferromagnetic (FM) island and then are pumped into the adjacent two- or four-terminal mesoscopic Aharonov-Casher (AC) ring of Rashba SOC where spin-charge conversions take place. Our spin-driven results show reciprocal features that excellently agree with the findings in the electric-driven setups mentioned above. We propose two types of symmetry operations, under which the AC ring Hamiltonian is invariant, to argue the relations of the pumped/converted currents in the leads within the same or between different pumping configurations. The symmetry arguments are independent of the ring width and the number of open channels in the leads, terminals, and precessing FM islands, In particular, net pure in-plane spin currents and pure spin currents can be generated in the leads for certain setups of two terminals and two precessing FM islands with the current magnitude and polarization direction tunable by the pumping configuration, gate voltage covering the two-terminal AC ring in between the FM islands.Comment: Submitted to Physical Review
    corecore