14,053 research outputs found

    Platinum-Cadmium Alloys

    Get PDF
    Platinum-cadmium alloys containing as high as 50 per cent platinum have been prepared by heating the two metals together. Solid platinum dissolves in hot molten cadmium to form a series of alloys, the melting points of which are relatively low. The thermal diagram of a portion of the system has been investigated by means of thermal analysis, microscopic study and X-ray examination. Two intermetallic compounds are formed, Pt2Cd9 and PtCd2. The compound Pt2Cd9 decomposes at a temperature of 615 into cadmium and PtCd2. The compound PtCd2 melts at 725°C. Pt2Cd9 and cadmium form a eutectic at 2 per cent cadmium which melts at 315°C

    The 10 micron spectral structure in comets

    Get PDF
    The 10 micron spectra of comets Halley (1982i), Wilson (1986l), Kohoutek (1973f) and Bradfield (1987s) are presented and compared. The silicate emission profiles of Halley and Bradfield are seen to be remarkably similar in that both contain a sharp break in the spectrum at 11.3 microns. Comet Bradfield does not show the same double peak structure seen in olivine and reported in Comet Halley be Campins and Ryan (1988) and Bregman, et al. (1987). The authors interpret the 11.3 micron signature as being due to olivine-type dust grains with at least some degree of crystallinity. Olivine alone is not enough to reproduce the shape of the 10 micron structure. However, in view of the authors' past success in fitting interstellar dust features with the emissivity profile obtained from amorphous grains produced by laser-vaporizing olivine, this is a very appealing identification. They note that there are significant variations in olivine spectra due to compositional differences, grain size distribution and related grain temperature variations to make the olivine identification tentative. They further tentatively identify the 9.8 micron feature in Halley as being due to either amorphorous olivine or a phyllosilicate (layer lattice). Neither the spectra of Halley, Kohoutek, nor Bradfield exhibited the 12.2 micron feature seen in Comet Wilson, which may prove diagnostic of the composition or thermal history differences between these comets. IR spectra of various mineral samples are discussed in terms of their match to cometary spectra

    Quantum Hall Ferromagnets: Induced Topological term and electromagnetic interactions

    Full text link
    The ν=1\nu = 1 quantum Hall ground state in materials like GaAs is well known to be ferromagnetic in nature. The exchange part of the Coulomb interaction provides the necessary attractive force to align the electron spins spontaneously. The gapless Goldstone modes are the angular deviations of the magnetisation vector from its fixed ground state orientation. Furthermore, the system is known to support electrically charged spin skyrmion configurations. It has been claimed in the literature that these skyrmions are fermionic owing to an induced topological Hopf term in the effective action governing the Goldstone modes. However, objections have been raised against the method by which this term has been obtained from the microscopics of the system. In this article, we use the technique of the derivative expansion to derive, in an unambiguous manner, the effective action of the angular degrees of freedom, including the Hopf term. Furthermore, we have coupled perturbative electromagnetic fields to the microscopic fermionic system in order to study their effect on the spin excitations. We have obtained an elegant expression for the electromagnetic coupling of the angular variables describing these spin excitations.Comment: 23 pages, Plain TeX, no figure

    Optical nanolithography using a scanning near-field probe with an integrated light source

    Get PDF
    An ultracompact near-field optical probe is described that is based on a single, integrated assembly consisting of a gallium nitride (GaN) light-emitting diode (LED), a microlens, and a cantilever assembly containing a hollow pyramidal probe with a subwavelength aperture at its apex. The LED emits ultraviolet light and may be used as a light source for near-field photolithographic exposure. Using this simple device compatible with many commercial atomic force microscope systems, it is possible to form nanostructures in photoresist with a resolution of 35 nm, corresponding to λ/10. © 2008 American Institute of Physics

    Surface plasmon resonance imaging detection of silver nanoparticle-tagged immunoglobulin

    Get PDF
    This article is available open access through the publisher’s website at the link below. Copyright @ 2011 The Royal Society.The detection sensitivity of silver nanoparticle (AgNP)-tagged goat immunoglobulin G (gIgG) microarrays was investigated by studying surface plasmon resonance (SPR) images captured in the visible wavelength range with the help of a Kretchmann-configured optical coupling set-up. The functionalization of anti-gIgG molecules on the AgNP surface was studied using transmission electron microscopy, photon correlation measurements and UV–visible absorption spectroscopy. A value of 1.3 × 107 M−1 was obtained for the antibody–antigen binding constant by monitoring the binding events at a particular resonance wavelength. The detection limit of this SPR imaging instrument is 6.66 nM of gIgG achieved through signal enhancement by a factor of larger than 4 owing to nanoparticle tagging with the antibody.The European Commissio

    The Creation of Defects with Core Condensation

    Full text link
    Defects in superfluid 3He, high-Tc superconductors, QCD colour superfluids and cosmic vortons can possess (anti)ferromagnetic cores, and their generalisations. In each case there is a second order parameter whose value is zero in the bulk which does not vanish in the core. We examine the production of defects in the simplest 1+1 dimensional scalar theory in which a second order parameter can take non-zero values in a defect core. We study in detail the effects of core condensation on the defect production mechanism.Comment: 9 pages, 7 figures, small corrections, 2 references added, final version to be published in PR

    Silicate Emission in the TW Hydrae Association

    Get PDF
    The TW Hydrae Association is the nearest young stellar association. Among its members are HD 98800, HR 4796A, and TW Hydrae itself, the nearest known classical T Tauri star. We have observed these three stars spectroscopically between 3 and 13 microns. In TW Hya the spectrum shows a silicate emission feature that is similar to many other young stars with protostellar disks. The 11.2 micron feature indicative of significant amounts of crystalline olivine is not as strong as in some young stars and solar system comets. In HR 4796A, the thermal emission in the silicate feature is very weak, suggesting little in the way of (small silicate) grains near the star. The silicate band of HD 98800 (observed by us but also reported by Sylvester and Skinner (1996)) is intermediate in strength between TW Hya and HR 4796.Comment: 22 pages, 11 figures, LaTeX2e and AAS LaTeX macros v5.0. Accepted for publication in A
    • …
    corecore