114 research outputs found

    Molecular architecture of softwood revealed by solid-state NMR

    Get PDF
    Economically important softwood from conifers is mainly composed of the polysaccharides cellulose, galactoglucomannan and xylan, and the phenolic polymer, lignin. The interactions between these polymers lead to wood mechanical strength and must be overcome in biorefining. Here, we use 13C multidimensional solid-state NMR to analyse the polymer interactions in never-dried cell walls of the softwood, spruce. In contrast to some earlier softwood cell wall models, most of the xylan binds to cellulose in the two-fold screw conformation. Moreover, galactoglucomannan alters its conformation by intimately binding to the surface of cellulose microfibrils in a semi-crystalline fashion. Some galactoglucomannan and xylan bind to the same cellulose microfibrils, and lignin is associated with both of these cellulose-bound polysaccharides. We propose a model of softwood molecular architecture which explains the origin of the different cellulose environments observed in the NMR experiments. Our model will assist strategies for improving wood usage in a sustainable bioeconomy

    Probing the molecular architecture of Arabidopsis thaliana secondary cell walls using two- and three-dimensional (13)C solid state nuclear magnetic resonance spectroscopy.

    Get PDF
    The plant secondary cell wall is a thickened polysaccharide and phenolic structure, providing mechanical strength to cells, particularly in woody tissues. It is the main feedstock for the developing bioenergy and green chemistry industries. Despite the role that molecular architecture (the arrangement of biopolymers relative to each other, and their conformations) plays in dictating biomass properties, such as recalcitrance to breakdown, it is poorly understood. Here, unprocessed dry (13)C-labeled stems from the model plant Arabidopsis thaliana were analyzed by a variety of (13)C solid state magic angle spinning nuclear magnetic resonance methods, such as one-dimensional cross-polarization and direct polarization, two-dimensional refocused INADEQUATE, RFDR, PDSD, and three-dimensional DARR, demonstrating their viability for the study of native polymer arrangements in intact secondary cell walls. All carbon sites of the two main glucose environments in cellulose (previously assigned to microfibril surface and interior residues) are clearly resolved, as are carbon sites of the other major components of the secondary cell wall: xylan and lignin. The xylan carbon 4 chemical shift is markedly different from that reported previously for solution or primary cell wall xylan, indicating significant changes in the helical conformation in these dried stems. Furthermore, the shift span indicates that xylan adopts a wide range of conformations in this material, with very little in the 31 conformation typical of xylan in solution. Additionally, spatial connections of noncarbohydrate species were observed with both cellulose peaks conventionally assigned as "surface" and as "interior" cellulose environments, raising questions about the origin of these two cellulose signals.This work was supported by BBSRC Grant BB/G016240/1, via The BBSRC Sustainable Bioenergy Cell Wall Sugars Programme. The UK 850 MHz solid state NMR Facility was funded by EPSRC Grant EP/F017901/1 and the BBSRC, as well as the University of Warwick, including via partial funding through Birmingham Science City Advanced Materials Projects 1 and 2, by Advantage West Midlands (AWM) and the European Regional Development Fund (ERDF).This is the final published version. It first appeared at http://pubs.acs.org/doi/abs/10.1021/bi501552k

    Synthesis and structural characterisation of solid titanium(IV) phosphate materials by means of X-ray absorption and NMR spectroscopy

    Get PDF
    Solid titanium phosphate, TiP, materials hold great promise for wastewater treatment for removal of metal ions and complexes. A series of TiP materials, synthesised at mild conditions and short reaction times, have been structurally characterised using solid-state X-ray absorption spectroscopy, phosphorus and titanium K edge XANES and EXAFS, and P-31 and Ti-47/49 NMR spectroscopy. The titanium K edge EXAFS data of alpha-Ti(HPO4)(2)center dot H2O (alpha-TiP) revealed octahedral coordination of oxygens around titanium. Repeated washing of primary beta-/gamma-TiP with hydrochloric acid results in formation of a weakly ordered solid, TiO(OH)(H2PO4)center dot H2O, TiP1-H. The structure of TiP1-H is shown by Ti EXAFS to be a titanyl compound, containing a short Ti=O bond. The analogous data for linked titanium phosphate compounds (LTP) disclosed that inter-linkage occurs between alpha-TiP and titanyl phosphate units, supported by P-31-P-31 NOESY NMR data. Ti-47/49 NMR and Ti pre-edge XANES show evidence of two different titanium environments in LTP, one very similar to that observed in TiP1-H and a second more symmetric octahedral environment. Data are discussed in terms of induced acidic hydrolyses of titanium(IV) and phosphate counterpart during washings with hydrochloric acid and water. A straightforward relation between synthesis parameters/post synthetic treatment and structural re-arrangement in the materials is established

    Golgi-localized STELLO proteins regulate the assembly and trafficking of cellulose synthase complexes in Arabidopsis.

    Get PDF
    As the most abundant biopolymer on Earth, cellulose is a key structural component of the plant cell wall. Cellulose is produced at the plasma membrane by cellulose synthase (CesA) complexes (CSCs), which are assembled in the endomembrane system and trafficked to the plasma membrane. While several proteins that affect CesA activity have been identified, components that regulate CSC assembly and trafficking remain unknown. Here we show that STELLO1 and 2 are Golgi-localized proteins that can interact with CesAs and control cellulose quantity. In the absence of STELLO function, the spatial distribution within the Golgi, secretion and activity of the CSCs are impaired indicating a central role of the STELLO proteins in CSC assembly. Point mutations in the predicted catalytic domains of the STELLO proteins indicate that they are glycosyltransferases facing the Golgi lumen. Hence, we have uncovered proteins that regulate CSC assembly in the plant Golgi apparatus.The work presented in this paper was supported by grants from the BBSRC: BB/G016240/1 BBSRC Sustainable Energy Centre Cell Wall Sugars Programme (BSBEC) and the European Community’s Seventh Framework Programme SUNLIBB (FP7/2007-2013) under the grant agreement n° 251132 to PD. The UK 850 MHz solid-state NMR Facility was funded by EPSRC and BBSRC, as well as the University of Warwick including via part funding through Birmingham Science City Advanced Materials Projects 1 and 2 supported by Advantage West Midlands (AWM) and the European Regional Development Fund (ERDF); we thank Dinu Iuga for experimental assistance, and Chris Somerville for helpful discussions and suggesting the name STELLO. The authors acknowledge LNBio and LNLS for providing X-ray beam time (proposal GAR 15208), and the Sainsbury Laboratory Cambridge University for imaging facilities. TV was supported by an EMBO long-term fellowship (ALTF 711-2012) and by postdoctoral funding from the Philomathia Foundation. HEM was supported by an EMBO Long Term Fellowship (ALTF-1246-2013) and an NSERC Postdoctoral Fellowship (PDF-454454-2014). SP and YZ were supported by the Max-Planck Gesellschaft, and SP was also supported by a R@MAP Professor position at UoM. We thank the Biological Optical Microscopy Platform (BOMP) at University of Melbourne, and Tom Simmons and Rita Marques for assistance on sugar analyses.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms11656

    Amyloid hydrogen bonding polymorphism evaluated by15N{17O}REAPDOR solid-state NMR and ultra-high resolution fourier transform ion cyclotron resonance mass spectrometry

    Get PDF
    A combined approach, using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and solid-state NMR (Nuclear Magnetic Resonance), shows a high degree of polymorphism exhibited by Aβ species in forming hydrogen-bonded networks. Two Alzheimer’s Aβ peptides, Ac-Aβ16–22-NH2 and Aβ11–25, selectively labeled with 17O and 15N at specific amino acid residues were investigated. The total amount of peptides labeled with 17O as measured by FTICR-MS enabled the interpretation of dephasing observed in 15N{17O}REAPDOR solid-state NMR experiments. Specifically, about one-third of the Aβ peptides were found to be involved in the formation of a specific >C═17O···H–15N hydrogen bond with their neighbor peptide molecules, and we hypothesize that the rest of the molecules undergo ± n off-registry shifts in their hydrogen bonding networks

    Structural origin of the weak germanate anomaly in lead germanate glass properties

    Get PDF
    Binary PbO–GeO2 glasses have been studied in detail from 5 to 75 mol% PbO using high-resolution neutron diffraction, high-energy X-ray diffraction, 207-Pb NMR, pycnometry, and thermal analysis. The Ge–O coordination number displays a broad maximum nGeO = 4.14(3) close to 27 mol% PbO. This is smaller than the maximum nGeO = 4.3 reported in CaO–GeO2 glasses but occurs at a similar composition. This structural behavior appears to explain the relatively weak germanate anomaly manifest in lead germanate glasses, for example as a maximum in the measured atom number density and a plateau in the glass transition temperatures. The structural role of Pb(II) is complex. On the one hand, short covalent Pb–O bonds and small Pb–O coordination numbers of ∼3 to 4 indicate glass network former character for Pb(II), associated with a stereochemically active electron lone pair. On the other hand, the presence of some GeO5 or GeO6 units, in addition to the majority GeO4 tetrahedral species, indicates some modifier character of Pb(II) at low PbO contents, giving rise to the observed weak germanate anomaly, as well as elongation and enhanced ionicity of the Pb–O bonds. Overall, the observed structural behavior of Pb(II) in lead germanate glasses appears as intermediate between that observed in lead silicate and lead borate glasses. Despite rapid quenching, at low PbO contents, the glasses studied exhibited nanoscale heterogeneity, evidenced by small-angle X-ray scattering consistent with the early stages of spinodal decomposition

    Golgi-localized STELLO proteins regulate the assembly and trafficking of cellulose synthase complexes in Arabidopsis

    Get PDF
    As the most abundant biopolymer on Earth, cellulose is a key structural component of the plant cell wall. Cellulose is produced at the plasma membrane by cellulose synthase (CesA) complexes (CSCs), which are assembled in the endomembrane system and trafficked to the plasma membrane. While several proteins that affect CesA activity have been identified, components that regulate CSC assembly and trafficking remain unknown. Here we show that STELLO1 and 2 are Golgi-localized proteins that can interact with CesAs and control cellulose quantity. In the absence of STELLO function, the spatial distribution within the Golgi, secretion and activity of the CSCs are impaired indicating a central role of the STELLO proteins in CSC assembly. Point mutations in the predicted catalytic domains of the STELLO proteins indicate that they are glycosyltransferases facing the Golgi lumen. Hence, we have uncovered proteins that regulate CSC assembly in the plant Golgi apparatus

    Secondary cell wall composition and candidate gene expression in developing willow (Salix purpurea) stems

    Get PDF
    The properties of the secondary cell wall (SCW) in willow largely determine the suitability of willow biomass feedstock for potential bioenergy and biofuel applications. SCW development has been little studied in willow and it is not known how willow compares with model species, particularly the closely related genus Populus. To address this and relate SCW synthesis to candidate genes in willow, a tractable bud culture-derived system was developed in Salix purpurea, and cell wall composition and RNA-Seq transcriptome were followed in stems during early development. A large increase in SCW deposition in the period 0–2 weeks after transfer to soil was characterised by a big increase in xylan content, but no change in the frequency of substitution of xylan with glucuronic acid, and increased abundance of putative transcripts for synthesis of SCW cellulose, xylan and lignin. Histochemical staining and immunolabeling revealed that increased deposition of lignin and xylan was associated with xylem, xylem fibre cells and phloem fibre cells. Transcripts orthologous to those encoding xylan synthase components IRX9 and IRX10 and xylan glucuronyl transferase GUX1 in Arabidopsis were co-expressed, and showed the same spatial pattern of expression revealed by in situ hybridisation at four developmental stages, with abundant expression in proto-xylem, xylem fibre and ray parenchyma cells and some expression in phloem fibre cells. The results show a close similarity with SCW development in Populus species, but also give novel information on the relationship between spatial and temporal variation in xylan-related transcripts and xylan composition

    Lead silicate glass structure : new insights from diffraction and modeling of probable lone pair locations

    Get PDF
    Structures of binary PbO‐SiO2 glasses have been studied in detail over the compositional range 35 to 80 mol% PbO using high‐resolution neutron diffraction, high‐energy X‐ray diffraction, static 207Pb NMR, and structural modeling. The changes in the local environment of Pb(II) are subtle; it has a low coordination to oxygen (∼3 to 4) plus a stereochemically active electron lone pair and, thus, behaves as a glass network forming (or intermediate) cation over the entire composition range. This conclusion contradicts previous reports that Pb(II) is a network modifier at low concentrations, and is supported by an analysis of lead and alkaline earth silicate glass molar volumes. The Pb‐O peak bond length shortens by 0.04 Å with increasing PbO content, indicating stronger, more covalent bonding, and consistent with an increase in the number of short (≤ 2.70 Å) Pb‐O bonds, from 3.3 to 3.6. This is accompanied by increased axial symmetry of the Pb(II) sites, and is interpreted as a gradual transition toward square pyramidal [PbO4] sites such as those found in crystalline PbO polymorphs. An attendant decrease in the periodicity associated with the first sharp diffraction peak (FSDP) toward that of β‐PbO, accompanied by increases in the correlation lengths associated with the plumbite network (FSDP) and silicate anions (neutron prepeak), provides evidence of increased intermediate‐range order and has implications for the glass forming limit imposed by crystallization. Pb(II) electron lone pairs occupy the natural voids within the silicate network at low PbO contents, while at high PbO contents they aggregate to create voids that form part of the plumbite network, analogous to the open channels in Pb11Si3O17 and the layered structures of α‐ and β‐PbO. Si‐O and Pb‐O bond lengths have been correlated with 29Si and 207Pb NMR chemical shifts, respectively. This is the first time that such correlations have been demonstrated for glasses and attests to the accuracy with which pulsed neutron total scattering can measure average bond lengths
    corecore