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ABSTRACT: A combined approach, using Fourier trans-
form ion cyclotron resonance mass spectrometry (FTICR-
MS) and solid-state NMR (Nuclear Magnetic Resonance),
shows a high degree of polymorphism exhibited by Aβ
species in forming hydrogen-bonded networks. Two
Alzheimer’s Aβ peptides, Ac-Aβ16−22-NH2 and Aβ11−25,
selectively labeled with 17O and 15N at specific amino acid
residues were investigated. The total amount of peptides
labeled with 17O as measured by FTICR-MS enabled the
interpretation of dephasing observed in 15N{17O}-
REAPDOR solid-state NMR experiments. Specifically,
about one-third of the Aβ peptides were found to be
involved in the formation of a specific >C17O···H−15N
hydrogen bond with their neighbor peptide molecules, and
we hypothesize that the rest of the molecules undergo ± n
off-registry shifts in their hydrogen bonding networks.

Structural stability and folding in biological systems is strongly
dependent on a network of hydrogen bonds. Building on

fundamental insight into amyloid fibril structure provided by
other solid-state NMR methods,1−8 15N{17O}REAPDOR solid-
state NMR has been recently employed in probing >CO···H−
N hydrogen bonding in amyloid fibrils formed by selectively 17O,
15N labeled Alzheimer’s amyloid-β (Aβ) peptides.9 To use this
method, 17O enrichment is essential, because of the low natural
abundance (0.04%) of the only magnetic isotope of oxygen.
Simulations of 15N{17O}REAPDOR dephasing data include the
17O enrichment level as an important parameter in the evaluation
of the heteronuclear 15N−17O dipole−dipole coupling constants,
from which 15N···17O internuclear distances and, therefore, the
lengths of hydrogen bonds are calculated.9,10 However,
elucidation of the precise degree of the 17O enrichment in
peptides from either conventional mass spectrometry (MS) or
17O NMR spectroscopy is a challenge, because of the naturally
abundant 13C (1.07%) isotope and an unknown degree of 17O
and 18O enrichment in reagents used in peptide synthesis, all
leading to a severe overlap in MS patterns from different
isotopologues (13C16O, 12C17O, etc.).

17O enrichment of amino acids is usually achieved by the use of
17O enriched water. Then, amino acids are Fmoc protected and
used as the input reagent in the fast Fmoc peptide synthesis.

Although the initial 17O and 18O enrichment in water could be
determined with a high precision, 17O enrichment levels may
change during the whole synthetic pathway. Moreover, for the
samples of interest in this research, the important value is the 17O
enrichment of one specific oxygen atom within an otherwise
normal peptide. Most methods one could consider to accurately
determine the 17O/18O enrichment values would require
chemistry such as acid hydrolysis or enzymatic digestion to
cleave the peptide into individual amino acids and afterward
measure the 17O enrichment of the individual amino acid.
However, such strategies run a strong risk of scrambling the 17O
labeling position and thus invalidating the measured 17O
enrichment information, and such methods generally will also
dilute the signal by inclusion of the oxygen atoms from other
unlabeled amino acids.
In a mass spectrum, the well resolved isotopic peaks of one

molecule representing each isotopologue are called the isotopic
fine structure of this molecule.11 In principle, the fine structure
could be separated if the resolution is sufficiently high (typically
requiring a resolving power m/Δm50% of 1−5 M at m/z 1000
depending on the elemental composition), but it remains a
challenging task for most modern mass spectrometers. Ultrahigh
resolution isotopic fine structure separations have to date been
achieved using Fourier transform ion cyclotron resonance mass
spectrometry (FTICR-MS) on molecules smaller than 1500
Da12,13 and are particularly focused on the determination of the
elemental composition.14−20

The two Aβ samples analyzed in this study are Ac-Aβ16−22-
NH2 (Ac-KLV18(

17O)FF20(
15N)AE-NH2, abbreviated as Aβ16−22

hereafter) and Aβ11−25 (EVHHQKLV18(
17O)FFA21-

(U−13C,15N)EDVG), i.e., the same samples as previously studied
by 15N{17O}REAPDOR.9 Here, using FTICR-MS, the total ratio
of 17O enrichment in the two samples is determined. Since 15N is
labeled (>98%) on Phe20 for Aβ16−22 or on Ala21 for Aβ11−25,
and similarly 13C is labeled (>99%) on Ala21 for Aβ11−25, the
formulas of the two peptides are written as C45H67O10N8

15N
(Mw 894.498124 Da) and C78

13C3H119O23N20
15N (Mw

1757.885869 Da), respectively. In order to calculate the ratio
of 17O labeling, the two peaks corresponding to 13C-substituted
and 17O-substituted peptides in the A+1 cluster (second isotopic

Received: October 7, 2015
Revised: March 4, 2016
Published: March 17, 2016

Rapid Report

pubs.acs.org/biochemistry

© 2016 American Chemical Society 2065 DOI: 10.1021/acs.biochem.5b01095
Biochemistry 2016, 55, 2065−2068

This is an open access article published under a Creative Commons Attribution (CC-BY)
License, which permits unrestricted use, distribution and reproduction in any medium,
provided the author and source are cited.

pubs.acs.org/biochemistry
http://dx.doi.org/10.1021/acs.biochem.5b01095
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html


cluster) must be fully resolved for both peptides, where the mass
difference (Δm) between 13C16O and 12C17O is 0.000862 Da.
On the basis of the FTICR-MS results, the levels of 17O

enrichment in these samples are about three times larger than
those involved in forming the C17O···H−15N hydrogen bond
as determined by 15N{17O}REAPDOR data for the same
samples. We hypothesize that this discrepancy is explained by a
high degree of amyloid hydrogen bonding polymorphism with
off-registry shifts between peptide molecules forming cross-β
structures.
Experimental Procedures. All mass spectrometry experi-

ments were carried out on a Bruker 12 T solariX FTICR mass
spectrometer using an Infinity cell21 (Bruker Daltonik,
Germany). See SI for experimental details. Additional control
experiments andMS/MS data are also included in the SI, Figures
S-1−S-9, and detailed peak assignment tables are available as
Tables S-1−S-11.
Solid-state NMR experiments were performed on a Bruker

Avance III 850 MHz spectrometer using a triple-resonance 2.5
mm double broadband probe (see SI for additional experimental
details). Additional NMR control experiments are also included
in the SI, Figures S-10−S-15 and Table S-12. 15N{17O}-
REAPDOR NMR experiments were performed for ∼2 mg of
Aβ16−22[Val18(

17O), Phe20(
15N)] aggregates prepared in a PBS

buffer at pH 7 following protocols described in detail by Balbach
et al.7 and for ∼4 mg of the polymorphic sample of this peptide
prepared in an aqueous solution with pH 6.9 adjusted using
NaOH(aq) and CH3COOH(aq) (see SI for details of the sample
preparation protocols section S-2 and NMR instrument settings,
section S-3). Transmission electron microscope (TEM) images
of the fibrils are in the SI, Figure S-16.
Results and Discussion. Figure 1 shows the high resolution

isotopic fine structure of the singly charged Aβ16−22

(C45H68O10N8
15N, Mw monoisotopic = 895.505401 Da)

inc lud ing the base l ine re so lved 1 3C- subs t i tu ted
( C 4 4

1 3 CH 6 8 O 1 0 N 8
1 5 N ) a n d 1 7 O - s u b s t i t u t e d

(C45H68O9
17ON8

15N) peaks in the A+1 cluster. The m/z values
of the peaks in Figure 1 are listed in Table S-1 (see Supporting

Information) with the monoisotopic peak at m/z 895.505401 as
the internal lock mass, and the overall mass uncertainty is 29 ppb.
In comparison, the theoretical mass spectrum of the correspond-
ing Aβ16−22 peptides with natural abundance oxygen is plotted in
Figure 1 as a blue dashed line above the experimental spectrum.
With an average experimental resolving power (abbreviated as
R.P.) of ∼4.94 M shown in Figure 1, the two peaks in the A+1
cluster are clearly resolved and a 0.000805 Da experimental mass
difference is measured which is 57 μDa different from the
theoretical value (0.000862 Da).
If the detection of the A+1 cluster with R.P. from 500,000 to

5,000,000 is tracked (shown in Figure S-2), the identification of
these two peaks becomes even more apparent. At a R.P. of
500,000, which is still generally not achievable by other types of
modern mass spectrometers, the peaks adjacent are completely
overlapped. Aided by the fine separation, the ratio of 17O
abundance is calculated by

= +

+

I I I

I

O abundance ( C O)/{ ( C O) ( C O)

( C O)}

17 12 17 12 16 12 17

12 18 (1)

where I(12C16O), I(12C17O), and I(12C18O) are the ion
intensities of the 12C 16O-, 12C 17O-, and 12C 18O- substituted
peaks. To minimize the influence of signal fluctuation, the results
from six runs are averaged (see Table S-3 in SI), where the
experimental ratios of the 12C16O-, the 12C17O-, and the 12C18O-
peaks are 34.4± 2.3%, 55.5± 2.2%, and 10.1± 1.3%, respectively
(for these x ± Δx% values, Δx% is defined as one standard
deviation of the uncertainty in the calibration). In contrast, for
the corresponding natural abundance oxygen Aβ species, these
numbers are 97.6%, 0.4%, and 2% correspondingly. Therefore, in
addition to 17O labeling, 18O is also simultaneously detected to be
about 8% enrichment for the Aβ16−22 peptide. The uncertainty of
the measurement is around 2.1% according to the detection of
the 13C-species in the same peptide (see SI). The simulated
spectrum generated by using the calculated ratio (16O:17O:18O =
34.4:55.5:10.1) is displayed on the top of Figure 1 in red, which
matches well with the experimental spectrum on the bottom
(black).
With increasing molecular weight, the complexity of elemental

composition and the difficulty of isotopic fine structure
measurement will increase dramatically. Therefore, the other
1 7 O e n r i c h e d p e p t i d e u n d e r s t u d y , A β 1 1 − 2 5

(C78
13C3H119O23N20

15N), demands an even more challenging
isotopic fine structure measurement, since its molecular mass
(Mw 1757.885869 Da) is almost twice as much as that of Aβ16−22
(Mw 894.498124 Da). Doubly charged Aβ11−25 ions are selected,
whereby the monoisotopic peak is at m/z 879.950210
(C78

13C3H121O23N20
15N). The Δm between the two peaks of

interest, the 13C peak (C77
13C4H121O23N20

15N), and the 17O
peak (C78

13C3H121O22
17ON20

15N) is still the same (0.000862
Da), but Δm/z is half, i.e., m/z 0.000431, in this case. Figure 2
shows the ultrahigh resolution fine structure detection for
Aβ11−25 with an average R.P. of 5.95 M and the corresponding
peak list is summarized in Table S-2. The experimental results of
the 12C16O-, 12C17O-, and 12C18O-substituted peaks are 27.9%,
56.8%, and 15.3%, respectively (Table S-6).
Additionally, tandem mass spectrometry unambiguously

locates the 17O labeling on the carbonyl oxygen of the Val18
residue in Aβ16−22 (see Figure S-4 and Table S-8 in SI) and
Aβ11−25 (Figure S-5 and Table S-8 in SI).
Finally, the oxygen labeling ratio of the Fmoc-Val(17O) (the

structure is shown in Figure S-8) sample used in the Fmoc

Figure 1. An ultrahigh resolution FTICR mass spectrum of the singly
charged Aβ16−22 (C45H68O10N8

15N) in black, and the simulated spectra
of Aβ16−22 with natural abundance oxygen (dashed blue lines) and using
the calculated ratio, 16O: 17O: 18O = 34.4:55.5:10.1 (red lines). The peak
list is in Table S-1.
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synthesis of the two peptides was measured and is estimated to
have 27.3 ± 0.9%, 59.4 ± 0.4%, and 13.3 ± 0.8% of 16O, 17O, and
18O respectively (Figure S-9 and Table S-10 in SI). Although the
same reagent, Fmoc-Val(17O), was used in the synthesis of both
of the peptides, it is not surprising that the 17O labeling values for
the peptide products are slightly different from each other and
from the labeling value in the amino acid used in the synthesis
due to unequal loss during synthesis and storage. Table S-11
summarizes the labeling measurements and experimental
uncertainty.
Intriguingly, the amount of 17O in the Ac-Aβ16−22-NH2 and

Aβ11−25 is 55−57%, i.e., ca. 3−4 times larger than the 13−15%
that we had previously assumed in our analysis of 15N{17O}-
REAPDOR MAS NMR data.9 This discrepancy requires
reconsideration of our previous interpretation of dephasing in
these 15N{17O}-REAPDOR MAS NMR experiments. Specifi-
cally, we, hypothesize here that only a proportion of the peptides
in our samples exhibits the registry that brings together in a
hydrogen bond C17O of valine-18 with a 15N labeled NH
group of phenylalanine-20 in Aβ16−22 or alanine-21 in Aβ11−25, as
is required to see a dephasing due to a 15N−17O dipolar coupling.
For example, consider Figure 3, which shows, for Aβ16−22, three
antiparallel β-sheet arrangements, but with three different
registries; i.e., a significant dephasing can only be observed for
the 17 + k ←→ 21 − k case in Figure 3b.
To further explore this interpretation, we also present data for

an additional sample of amyloid fibrils of [15N,17O]-Aβ16−22 using
the same batch of the synthesized and purified peptide, but
following a modified incubation protocol (see SI). This sample is
highly polymorphic in terms of a coexistence of different well-
defined secondary structures in the same sample (see TEM
images in Figure S-16), since there are at least four different
narrow 15N resonance lines readily distinguished between 116
and 130 ppm (see Figures S-12−S-14). 15N{17O}REAPDOR
NMR dephasing curves for these different resonances can be fit
best using the same dipolar coupling of 80 Hz (corresponding to
a C17O···H−15N hydrogen bond) but different scaling factors

ranging from 13 to 25% for different resonance lines (see NMR
data evaluation in Figure S-15).
In the context of this interpretation of our data, we note that

the origin and variety of polymorphism in amyloid fibrils is a
widely debated topic.7,8,22−26 Meier and co-workers have
reported on pH-dependent polymorphism of the ccβ-p model
peptide, Ac-SIRELEARIRELELRIG-NH2, which adopts β-
pleated structures with different registries: “−2”-or registry at
pH 2.0 and “+3”-or registry at pH 7.3.24 Interestingly, solid-state
13C{15N} REDOR NMR dephasing for samples prepared at
intermediate pH values supports a model in which each register
segregates into different fibrils, or, alternatively, populates larger
domains within the same fibril. Although 13C{15N} REDOR
NMR data cannot distinguish between these two possibilities,
they clearly exclude a fully random mixing of the two registers.24

The work of Meier and co-workers has also revealed that small
changes at the molecular level, such as side-chain protonation of
glutamic acids along the peptide sequence, can have a large effect
on the final fibril structure.24 A similar phenomenon (i.e.,
protonation of glutamic and aspartic acids) has also been
discussed by Tycko and co-workers for Aβ11−25 fibrils prepared at
acidic conditions (pH 2.4), which have a different registry
compared to pH 7.4 Aβ11−25 fibrils.

8 Nielsen and co-workers have
further developed a useful approach based on symmetry
principles, solid-state NMR, and XRD in studies of poly-

Figure 2. An ultrahigh resolution FTICR mass spectrum of the doubly
charged Aβ11−25 (C78

13C3H121O23N20
15N) in black, and the simulated

spectra of Aβ11−25 with natural abundance oxygen (dashed blue lines)
and using the calculated ratio, 16O: 17O: 18O = 27.9:56.8:15.3 (red lines).
The peak list is in Table S-2. Using absorption mode, a further 57%
resolution increase was achieved, resulting in RP > 9 M (see Figure S-7
in SI).

Figure 3. Schematic representation of hydrogen bonding in putative
models of amyloid fibrils of Aβ16−22. Three antiparallel arrangements
with different registries are exhibited: 17 + k←→ 20 − k (a); 17 + k←
→ 21 − k (b); 17 + k ←→ 22 − k (c). Experiments are performed on
samples with 17O labeling of the Val18 carbonyl group and

15N labeling of
the Phe20 amide group. Selectively isotopically labeled fragments
involved in C17O···H−15N hydrogen bonds are highlighted by yellow
ellipsoids in (b) and are absent in (a and c), for which the labeled
residues are indicated by black circles.
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morphism of amyloid fibrils: eight classes of steric zippers in β-
sheet pleated amyloid fibrils formed from short peptides have
been identified.25

It has been also found that different arrangements of β-sheets
in amyloid fibrils may lead to different (both 13C and 15N)
chemical shift patterns. The chemical shifts depend on whether
the side-chain points into or away from the zipper, leading to
large chemical shift differences for “odd/even” combinations
relative to “even/even” or “odd/odd” combinations of side-
chains on the interacting surfaces of laminas.25 Supported by
TEM and 15N CP/MAS NMR data reported here (Figures S12−
S16), we hypothesize that the peptides studied in this work are
also affected by these general paradigms of polymorphism of
amyloid fibrils, i.e., “off-registry” shifts in combination with
interlamina surface interactions in amyloid fibrils. We further
note that, as shown by in situ AFM, different polymorphs of
amyloid fibrils, such as the Arctic mutation of Aβ1−40(E22G),
may simultaneously grow in the same sample conditions.26

Conclusions. In summary, assisted by the resolving power of
FTICR-MS, the ratios of 17O enrichment of two amyloid
peptides, Aβ16−22 and Aβ11−25, were quantified using their
isotopic fine structures. By comparing to the corresponding
15N{17O}REAPDORNMR experiments, only about one-third to
one-half of the Aβ peptides in these samples were found involved
in the formation of the specific >C17O···H−15N hydrogen
bonds with their neighbor peptide molecules. We hypothesize
that the rest of the molecules adopt amyloid fibril structures
undergoing ± n off-registry shifts in β-sheets, which suggests a
high degree of polymorphism exhibited by Aβ species in forming
hydrogen-bonded networks.
Tandem mass spectrometry methods determined the isotope

labeling site. This research expands the application of isotopic
fine structure mass spectrometry in NMR research and
demonstrates the unique value of ultrahigh resolution and high
mass accuracy capabilities of FTICR-MS for applications in the
NMR community requiring isotopic labeling.
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