245 research outputs found

    Periodic Variation of Stress in Sputter Deposited Si/WSi2 Multilayers

    Full text link
    A tension increment after sputter deposition of 1 nm of WSi2 onto sputtered Si was observed at low Ar gas pressures. Wafer curvature data on multilayers were found to have a periodic variation corresponding to the multilayer period, and this permitted statistical analyses to improve the sensitivity to small stresses. The observation of tension instead of compression in the initial stage of growth is new and a model invoking surface rearrangement is invoked. The data also bear on an unusual surface smoothing phenomena for sputtered Si surfaces caused by the sputter deposition of WSi2 . We furthermore report that for low Ar pressures the Si layers are the predominant source of built-up stress

    Pressure-dependent transition from atoms to nanoparticles in magnetron sputtering: Effect on WSi2 film roughness and stress

    Full text link
    We report on the transition between two regimes from several-atom clusters to much larger nanoparticles in Ar magnetron sputter deposition of WSi2, and the effect of nanoparticles on the properties of amorphous thin films and multilayers. Sputter deposition of thin films is monitored by in situ x-ray scattering, including x-ray reflectivity and grazing incidence small angle x-ray scattering. The results show an abrupt transition at an Ar background pressure Pc; the transition is associated with the threshold for energetic particle thermalization, which is known to scale as the product of the Ar pressure and the working distance between the magnetron source and the substrate surface. Below Pc smooth films are produced, while above Pc roughness increases abruptly, consistent with a model in which particles aggregate in the deposition flux before reaching the growth surface. The results from WSi2 films are correlated with in situ measurement of stress in WSi2/Si multilayers, which exhibits a corresponding transition from compressive to tensile stress at Pc. The tensile stress is attributed to coalescence of nanoparticles and the elimination of nano-voids.Comment: 16 pages, 10 figures; v3: published versio

    Functional network changes and cognitive control in schizophrenia

    Get PDF
    Cognitive control is a cognitive and neural mechanism that contributes to managing the complex demands of day-to-day life. Studies have suggested that functional impairments in cognitive control associated brain circuitry contribute to a broad range of higher cognitive deficits in schizophrenia. To examine this issue, we assessed functional connectivity networks in healthy adults and individuals with schizophrenia performing tasks from two distinct cognitive domains that varied in demands for cognitive control, the RiSE episodic memory task and DPX goal maintenance task. We characterized general and cognitive control-specific effects of schizophrenia on functional connectivity within an expanded frontal parietal network (FPN) and quantified network topology properties using graph analysis. Using the network based statistic (NBS), we observed greater network functional connectivity in cognitive control demanding conditions during both tasks in both groups in the FPN, and demonstrated cognitive control FPN specificity against a task independent auditory network. NBS analyses also revealed widespread connectivity deficits in schizophrenia patients across all tasks. Furthermore, quantitative changes in network topology associated with diagnostic status and task demand were observed. The present findings, in an analysis that was limited to correct trials only, ensuring that subjects are on task, provide critical insights into network connections crucial for cognitive control and the manner in which brain networks reorganize to support such control. Impairments in this mechanism are present in schizophrenia and these results highlight how cognitive control deficits contribute to the pathophysiology of this illness

    Initial experience of dedicated breast PET imaging of ER+ breast cancers using [F-18]fluoroestradiol.

    Get PDF
    Dedicated breast positron emission tomography (dbPET) is an emerging technology with high sensitivity and spatial resolution that enables detection of sub-centimeter lesions and depiction of intratumoral heterogeneity. In this study, we report our initial experience with dbPET using [F-18]fluoroestradiol (FES) in assessing ER+ primary breast cancers. Six patients with >90% ER+ and HER2- breast cancers were imaged with dbPET and breast MRI. Two patients had ILC, three had IDC, and one had an unknown primary tumor. One ILC patient was treated with letrozole, and another patient with IDC was treated with neoadjuvant chemotherapy without endocrine treatment. In this small cohort, we observed FES uptake in ER+ primary breast tumors with specificity to ER demonstrated in a case with tamoxifen blockade. FES uptake in ILC had a diffused pattern compared to the distinct circumscribed pattern in IDC. In evaluating treatment response, the reduction of SUVmax was observed with residual disease in an ILC patient treated with letrozole, and an IDC patient treated with chemotherapy. Future study is critical to understand the change in FES SUVmax after endocrine therapy and to consider other tracer uptake metrics with SUVmax to describe ER-rich breast cancer. Limitations include variations of FES uptake in different ER+ breast cancer diseases and exclusion of posterior tissues and axillary regions. However, FES-dbPET has a high potential for clinical utility, especially in measuring response to neoadjuvant endocrine treatment. Further development to improve the field of view and studies with a larger cohort of ER+ breast cancer patients are warranted

    Functional Activation and Effective Connectivity Differences in Adolescent Marijuana Users Performing a Simulated Gambling Task

    Get PDF
    Background. Adolescent marijuana use is associated with structural and functional differences in forebrain regions while performing memory and attention tasks. In the present study, we investigated neural processing in adolescent marijuana users experiencing rewards and losses. Fourteen adolescents with frequent marijuana use (\u3e5 uses per week) and 14 nonuser controls performed a computer task where they were required to guess the outcome of a simulated coin flip while undergoing magnetic resonance imaging. Results. Across all participants, ?Wins? and ?Losses? were associated with activations including cingulate, middle frontal, superior frontal, and inferior frontal gyri and declive activations. Relative to controls, users had greater activity in the middle and inferior frontal gyri, caudate, and claustrum during ?Wins? and greater activity in the anterior and posterior cingulate, middle frontal gyrus, insula, claustrum, and declive during ?Losses.? Effective connectivity analyses revealed similar overall network interactions among these regions for users and controls during both ?Wins? and ?Losses.? However, users and controls had significantly different causal interactions for 10 out of 28 individual paths during the ?Losses? condition. Conclusions. Collectively, these results indicate adolescent marijuana users have enhanced neural responses to simulated monetary rewards and losses and relatively subtle differences in effective connectivity

    Methyl-CpG-binding domain sequencing reveals a prognostic methylation signature in neuroblastoma

    Get PDF
    Accurate assessment of neuroblastoma outcome prediction remains challenging. Therefore, this study aims at establishing novel prognostic tumor DNA methylation biomarkers. In total, 396 low- and high-risk primary tumors were analyzed, of which 87 were profiled using methyl-CpG-binding domain (MBD) sequencing for differential methylation analysis between prognostic patient groups. Subsequently, methylation-specific PCR (MSP) assays were developed for 78 top-ranking differentially methylated regions and tested on two independent cohorts of 132 and 177 samples, respectively. Further, a new statistical framework was used to identify a robust set of MSP assays of which the methylation score (i.e. the percentage of methylated assays) allows accurate outcome prediction. Survival analyses were performed on the individual target level, as well as on the combined multimarker signature. As a result of the differential DNA methylation assessment by MBD sequencing, 58 of the 78 MSP assays were designed in regions previously unexplored in neuroblastoma, and 36 are located in non-promoter or non-coding regions. In total, 5 individual MSP assays (located in CCDC177, NXPH1, lnc-MRPL3-2, lnc-TREX1-1 and one on a region from chromosome 8 with no further annotation) predict event-free survival and 4 additional assays (located in SPRED3, TNFAIP2, NPM2 and CYYR1) also predict overall survival. Furthermore, a robust 58-marker methylation signature predicting overall and event-free survival was established. In conclusion, this study encompasses the largest DNA methylation biomarker study in neuroblastoma so far. We identified and independently validated several novel prognostic biomarkers, as well as a prognostic 58-marker methylation signature

    Emissions pathways, climate change, and impacts on California

    Get PDF
    The magnitude of future climate change depends substantially on the greenhouse gas emission pathways we choose. Here we explore the implications of the highest and lowest Intergovernmental Panel on Climate Change emissions pathways for climate change and associated impacts in California. Based on climate projections from two state-of-the-art climate models with low and medium sensitivity (Parallel Climate Model and Hadley Centre Climate Model, version 3, respectively), we find that annual temperature increases nearly double from the lower B1 to the higher A1fi emissions scenario before 2100. Three of four simulations also show greater increases in summer temperatures as compared with winter. Extreme heat and the associated impacts on a range of temperature-sensitive sectors are substantially greater under the higher emissions scenario, with some interscenario differences apparent before midcentury. By the end of the century under the B1 scenario, heatwaves and extreme heat in Los Angeles quadruple in frequency while heat-related mortality increases two to three times; alpine subalpine forests are reduced by 50–75%; and Sierra snowpack is reduced 30–70%. Under A1fi, heatwaves in Los Angeles are six to eight times more frequent, with heat-related excess mortality increasing five to seven times; alpine subalpine forests are reduced by 75–90%; and snowpack declines 73–90%, with cascading impacts on runoff and streamflow that, combined with projected modest declines in winter precipitation, could fundamentally disrupt California’s water rights system. Although interscenario differences in climate impacts and costs of adaptation emerge mainly in the second half of the century, they are strongly dependent on emissions from preceding decades

    Global CO2 fluxes inferred from surface air-sample measurements and from TCCON retrievals of the CO2 total column

    Get PDF
    We present the first estimate of the global distribution of CO2surface fluxes from 14 stations of the Total Carbon Column Observing Network (TCCON). The evaluation of this inversion is based on 1) comparison with the fluxes from a classical inversion of surface air-sample-measurements, and 2) comparison of CO2mixing ratios calculated from the inverted fluxes with independent aircraft measurements made during the two years analyzed here, 2009 and 2010. The former test shows similar seasonal cycles in the northern hemisphere and consistent regional carbon budgets between inversions from the two datasets, even though the TCCON inversion appears to be less precise than the classical inversion. The latter test confirms that the TCCON inversion has improved the quality (i.e., reduced the uncertainty) of the surface fluxes compared to the assumed or prior fluxes. The consistency between the surface-air-sample-based and the TCCON-based inversions despite remaining flaws in transport models opens the possibility of increased accuracy and robustness of flux inversions based on the combination of both data sources and confirms the usefulness of space-borne monitoring of the CO2 column.It was co-funded by the European Commission under the EU Seventh Research Framework Programme (grants agreements 218793, MACC, and 212196, COCOS

    Direct Discovery of the Inner Exoplanet in the Hd 206893 System: Evidence for Deuterium Burning in a Planetary-Mass Companion

    Get PDF
    Aims. HD 206893 is a nearby debris disk star that hosts a previously identified brown dwarf companion with an orbital separation of ~ 10 au. Long-Term precise radial velocity (RV) monitoring, as well as anomalies in the system proper motion, has suggested the presence of an additional, inner companion in the system. Methods. Using information from ongoing precision RV measurements with the HARPS spectrograph, as well as Gaia host star astrometry, we have undertaken a multi-epoch search for the purported additional planet using the VLTI/GRAVITY instrument. Results. We report a high-significance detection over three epochs of the companion HD 206893c, which shows clear evidence for Keplerian orbital motion. Our astrometry with ~ 50-100 µarcsec precision afforded by GRAVITY allows us to derive a dynamical mass of 12.7+1.21.0 {+1.2}_{-1.0} MJup and an orbital separation of 3.53+0.080.06 {+0.08}_{-0.06} au for HD 206893c. Our fits to the orbits of both companions in the system use both Gaia astrometry and RVs to also provide a precise dynamical estimate of the previously uncertain mass of the B component, and therefore allow us to derive an age of 155 ± 15 Myr for the system. We find that theoretical atmospheric and evolutionary models that incorporate deuterium burning for HD 206893c, parameterized by cloudy atmosphere models as well as a hybrid sequence (encompassing a transition from cloudy to cloud-free), provide a good simultaneous fit to the luminosity of both HD 206893B and c. Thus, accounting for both deuterium burning and clouds is crucial to understanding the luminosity evolution of HD 206893c. Conclusions. In addition to using long-Term RV information, this effort is an early example of a direct imaging discovery of a bona fide exoplanet that was guided in part by Gaia astrometry. Utilizing Gaia astrometry is expected to be one of the primary techniques going forward for identifying and characterizing additional directly imaged planets. In addition, HD 206893c is an example of an object narrowly straddling the deuterium-burning limit but unambiguously undergoing deuterium burning. Additional discoveries like this may therefore help clarify the discrimination between a brown dwarf and an extrasolar planet. Lastly, this discovery is another example of the power of optical interferometry to directly detect and characterize extrasolar planets where they form, at ice-line orbital separations of 2-4 au

    The JWST Early Release Science Program for the Direct Imaging and Spectroscopy of Exoplanetary Systems

    Get PDF
    The direct characterization of exoplanetary systems with high-contrast imaging is among the highest priorities for the broader exoplanet community. As large space missions will be necessary for detecting and characterizing exo-Earth twins, developing the techniques and technology for direct imaging of exoplanets is a driving focus for the community. For the first time, JWST will directly observe extrasolar planets at mid-infrared wavelengths beyond 5 μm, deliver detailed spectroscopy revealing much more precise chemical abundances and atmospheric conditions, and provide sensitivity to analogs of our solar system ice-giant planets at wide orbital separations, an entirely new class of exoplanet. However, in order to maximize the scientific output over the lifetime of the mission, an exquisite understanding of the instrumental performance of JWST is needed as early in the mission as possible. In this paper, we describe our 55 hr Early Release Science Program that will utilize all four JWST instruments to extend the characterization of planetary-mass companions to ∼15 μm as well as image a circumstellar disk in the mid-infrared with unprecedented sensitivity. Our program will also assess the performance of the observatory in the key modes expected to be commonly used for exoplanet direct imaging and spectroscopy, optimize data calibration and processing, and generate representative data sets that will enable a broad user base to effectively plan for general observing programs in future Cycles
    corecore