847 research outputs found
Preclinical development of a bispecific TNFα/IL-23 neutralising domain antibody as a novel oral treatment for inflammatory bowel disease.
Anti-TNFα and anti-IL-23 antibodies are highly effective therapies for Crohn's disease or ulcerative colitis in a proportion of patients. V56B2 is a novel bispecific domain antibody in which a llama-derived IL-23p19-specific domain antibody, humanised and engineered for intestinal protease resistance, V900, was combined with a previously-described TNFα-specific domain antibody, V565. V56B2 contains a central protease-labile linker to create a single molecule for oral administration. Incubation of V56B2 with trypsin or human faecal supernatant resulted in a complete separation of the V565 and V900 monomers without loss of neutralising potency. Following oral administration of V900 and V565 in mice, high levels of each domain antibody were detected in the faeces, demonstrating stability in the intestinal milieu. In ex vivo cultures of colonic biopsies from IBD patients, treatment with V565 or V900 inhibited tissue phosphoprotein levels and with a combination of the two, inhibition was even greater. These results support further development of V56B2 as an oral therapy for IBD with improved safety and efficacy in a greater proportion of patients as well as greater convenience for patients compared with traditional monoclonal antibody therapies
PINT: A Modern Software Package for Pulsar Timing
Over the past few decades, the measurement precision of some pulsar-timing
experiments has advanced from ~10 us to ~10 ns, revealing many subtle
phenomena. Such high precision demands both careful data handling and
sophisticated timing models to avoid systematic error. To achieve these goals,
we present PINT (PINT Is Not Tempo3), a high-precision Python pulsar timing
data analysis package, which is hosted on GitHub and available on Python
Package Index (PyPI) as pint-pulsar. PINT is well-tested, validated,
object-oriented, and modular, enabling interactive data analysis and providing
an extensible and flexible development platform for timing applications. It
utilizes well-debugged public Python packages (e.g., the NumPy and Astropy
libraries) and modern software development schemes (e.g., version control and
efficient development with git and GitHub) and a continually expanding test
suite for improved reliability, accuracy, and reproducibility. PINT is
developed and implemented without referring to, copying, or transcribing the
code from other traditional pulsar timing software packages (e.g., TEMPO and
TEMPO2) and therefore provides a robust tool for cross-checking timing analyses
and simulating pulse arrival times. In this paper, we describe the design,
usage, and validation of PINT, and we compare timing results between it and
TEMPO and TEMPO2.Comment: Re-submitted to the Astrophysical Journal at December 31st, 202
Multi-Messenger Gravitational Wave Searches with Pulsar Timing Arrays: Application to 3C66B Using the NANOGrav 11-year Data Set
When galaxies merge, the supermassive black holes in their centers may form
binaries and, during the process of merger, emit low-frequency gravitational
radiation in the process. In this paper we consider the galaxy 3C66B, which was
used as the target of the first multi-messenger search for gravitational waves.
Due to the observed periodicities present in the photometric and astrometric
data of the source of the source, it has been theorized to contain a
supermassive black hole binary. Its apparent 1.05-year orbital period would
place the gravitational wave emission directly in the pulsar timing band. Since
the first pulsar timing array study of 3C66B, revised models of the source have
been published, and timing array sensitivities and techniques have improved
dramatically. With these advances, we further constrain the chirp mass of the
potential supermassive black hole binary in 3C66B to less than using data from the NANOGrav 11-year data set. This
upper limit provides a factor of 1.6 improvement over previous limits, and a
factor of 4.3 over the first search done. Nevertheless, the most recent orbital
model for the source is still consistent with our limit from pulsar timing
array data. In addition, we are able to quantify the improvement made by the
inclusion of source properties gleaned from electromagnetic data to `blind'
pulsar timing array searches. With these methods, it is apparent that it is not
necessary to obtain exact a priori knowledge of the period of a binary to gain
meaningful astrophysical inferences.Comment: 14 pages, 6 figures. Accepted by Ap
Exoplanet Diversity in the Era of Space-based Direct Imaging Missions
This whitepaper discusses the diversity of exoplanets that could be detected
by future observations, so that comparative exoplanetology can be performed in
the upcoming era of large space-based flagship missions. The primary focus will
be on characterizing Earth-like worlds around Sun-like stars. However, we will
also be able to characterize companion planets in the system simultaneously.
This will not only provide a contextual picture with regards to our Solar
system, but also presents a unique opportunity to observe size dependent
planetary atmospheres at different orbital distances. We propose a preliminary
scheme based on chemical behavior of gases and condensates in a planet's
atmosphere that classifies them with respect to planetary radius and incident
stellar flux.Comment: A white paper submitted to the National Academy of Sciences Exoplanet
Science Strateg
An integrated 1D–2D hydraulic modelling approach to assess the sensitivity of a coastal region to compound flooding hazard under climate change
Coastal regions are dynamic areas that often lie at the junction of different natural hazards. Extreme events such as storm surges and high precipitation are significant sources of concern for flood management. As climatic changes and sea-level rise put further pressure on these vulnerable systems, there is a need for a better understanding of the implications of compounding hazards. Recent computational advances in hydraulic modelling offer new opportunities to support decision-making and adaptation. Our research makes use of recently released features in the HEC-RAS version 5.0 software to develop an integrated 1D–2D hydrodynamic model. Using extreme value analysis with the Peaks-Over-Threshold method to define extreme scenarios, the model was applied to the eastern coast of the UK. The sensitivity of the protected wetland known as the Broads to a combination of fluvial, tidal and coastal sources of flooding was assessed, accounting for different rates of twenty-first century sea-level rise up to the year 2100. The 1D–2D approach led to a more detailed representation of inundation in coastal urban areas, while allowing for interactions with more fluvially dominated inland areas to be captured. While flooding was primarily driven by increased sea levels, combined events exacerbated flooded area by 5–40% and average depth by 10–32%, affecting different locations depending on the scenario. The results emphasise the importance of catchment-scale strategies that account for potentially interacting sources of flooding
Importance of Coverage and Endemicity on the Return of Infectious Trachoma after a Single Mass Antibiotic Distribution
Trachoma, caused by ocular chlamydia infection, is the most common infectious cause of blindness in the world. The World Health Organization (WHO) recommends the SAFE strategy (eyelid surgery, antibiotics, facial hygiene, environmental improvements) for trachoma control. Oral antibiotics reduce the transmission of ocular chlamydia, but re-infection of treated individuals is common. Therefore, the WHO recommends annual mass antibiotic treatments to the entire village. The success of treatment is likely based on many factors, including the antibiotic coverage, or percentage of villagers who receive antibiotics. However, no studies have analyzed the importance of antibiotic coverage for the reduction of ocular chlamydia. Here, we performed multivariate regression analyses on data from a clinical trial of mass oral antibiotics for trachoma in a severely affected area of Ethiopia. At the relatively high levels of antibiotic coverage in our study, coverage was associated with post-treatment infection at two months, but not at six months. The amount of infection at baseline was strongly correlated with post-treatment infection at both two and six months. These results suggest that in areas with severe trachoma treated with relatively high antibiotic coverage, increasing coverage even further may have only a short-term benefit
Discovery, Timing, and Multiwavelength Observations of the Black Widow Millisecond Pulsar PSR J1555-2908
We report the discovery of PSR J1555-2908, a 1.79 ms radio and gamma-ray pulsar in a 5.6 hr binary system with a minimum companion mass of 0.052 M ⊙. This fast and energetic ( Ė=3×1035 erg s-1) millisecond pulsar was first detected as a gamma-ray point source in Fermi Large Area Telescope (LAT) sky survey observations. Guided by a steep-spectrum radio point source in the Fermi error region, we performed a search at 820 MHz with the Green Bank Telescope that first discovered the pulsations. The initial radio pulse timing observations provided enough information to seed a search for gamma-ray pulsations in the LAT data, from which we derive a timing solution valid for the full Fermi mission. In addition to the discovery and timing of radio and gamma-ray pulsations, we searched for X-ray pulsations using NICER but no significant pulsations were detected. We also obtained time-series r-band photometry that indicates strong heating of the companion star by the pulsar wind. Material blown off the heated companion eclipses the 820 MHz radio pulse during inferior conjunction of the companion for ≈10% of the orbit, which is twice the angle subtended by its Roche lobe in an edge-on system. © 2022. The Author(s). Published by the American Astronomical Society
UBVRI Light Curves of 44 Type Ia Supernovae
We present UBVRI photometry of 44 type-Ia supernovae (SN Ia) observed from
1997 to 2001 as part of a continuing monitoring campaign at the Fred Lawrence
Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics. The
data set comprises 2190 observations and is the largest homogeneously observed
and reduced sample of SN Ia to date, nearly doubling the number of
well-observed, nearby SN Ia with published multicolor CCD light curves. The
large sample of U-band photometry is a unique addition, with important
connections to SN Ia observed at high redshift. The decline rate of SN Ia
U-band light curves correlates well with the decline rate in other bands, as
does the U-B color at maximum light. However, the U-band peak magnitudes show
an increased dispersion relative to other bands even after accounting for
extinction and decline rate, amounting to an additional ~40% intrinsic scatter
compared to B-band.Comment: 84 authors, 71 pages, 51 tables, 10 figures. Accepted for publication
in the Astronomical Journal. Version with high-res figures and electronic
data at http://astron.berkeley.edu/~saurabh/cfa2snIa
- …