1,426 research outputs found

    Mineralogical Transformation and Electrochemical Nature of Magnesium-Rich Primers During Natural Weathering

    Get PDF
    Magnesium-rich primers (MgRP) have generated great interest as a promising alternative to chromium-based primers for the protection of aluminum substrates but their performance during exterior exposure has not been well documented. This paper focuses on the evaluation of MgRP during natural weathering to gain insight into its mineralogical phase transformation and electrochemical nature. Control studies were conducted on Mg and AA2024-T3 coupons. The results indicate that Mg particles in MgRP transform into a variety of hydroxide, carbonate, and hydroxy carbonates. During natural weathering, CO2 inhibited the dissolution of both Mg and AA2024-T3 as a result of protective carbonate layer formation in the coating

    The Different Structures of the Two Classes of Starless Cores

    Full text link
    We describe a model for the thermal and dynamical equilibrium of starless cores that includes the radiative transfer of the gas and dust and simple CO chemistry. The model shows that the structure and behavior of the cores is significantly different depending on whether the central density is either above or below about 10^5 cm-3. This density is significant as the critical density for gas cooling by gas-dust collisions and also as the critical density for dynamical stability, given the typical properties of the starless cores. The starless cores thus divide into two classes that we refer to as thermally super-critical and thermally sub-critical.This two-class distinction allows an improved interpretation of the different observational data of starless cores within a single model.Comment: ApJ in pres

    Observation of Stratospheric Ozone Depletion associated with Delta II Rocket Emissions

    Get PDF
    Ozone, chlorine monoxide, methane, and submicron particulate concentrations were measured in the stratospheric plume wake of a Delta II rocket powered by a combination of solid (NH4ClO4/Al) and liquid (LOX/kerosene) propulsion systems. We apply a simple kinetics model describing the main features of gas-phase chlorine reactions in solid propellant exhaust plumes to derive the abundance of total reactive chlorine in the plume and estimate the associated cumulative ozone loss. Measured ozone loss during two plume encounters (12 and 39 minutes after launch) exceeded the estimate by about a factor of about two. Insofar as only the most significant gas-phase chlorine reactions are included in the calculation, these results suggest that additional plume wake chemical processes or emissions other than reactive chlorine from the Delta II propulsion system affect ozone levels in the plume

    Researching workplace friendships: drawing insights from the sociology of friendship

    Get PDF
    Although organizational research on workplace friendships is well established, it has been criticized for its predominately postpositivistic outlook, which largely focuses on how workplace friendships can be linked to improving organizational outcomes such as efficiency and performance. As a consequence other aspects of the lived experiences of work and friendship are obscured, in particular how these friendships are important in their own right and how they function as social and personal relationships. Supplementing postpositivistic research on workplace friendships, this article shows how researchers can derive theoretical insights from a ‘sociology of friendship’. The main contribution of this article relates to the development of a sociology of workplace friendship that understands the porous and mutable nature of these relationships and considers the social and personal factors that influence their role, place and meaning in the workplace. As such, three sociological frames of analysis are elaborated that encourage researchers to examine friendships at work as a set of contextually contingent social practices and as historically patterned social and personal relationships. This article articulates an agenda of research to inspire and guide researchers using these frames, one potential outcome of which is generating much needed scholarship that explores how workplace friendships contribute to human flourishing

    The value of health

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A major problem in cost-effectiveness studies is where to draw the line between interventions which are cost-effective and those who are not. Lacking a notion about the value of a QALY, all ultimate values to the cost-effectiveness ratio are essentially arbitrary.</p> <p>Methods</p> <p>This paper presents a simple empirical model to estimate the compensating income variation of diseases and health problems. The model is estimated using data for the Netherlands.</p> <p>Results</p> <p>The compensating income variation is between €20,000 and €90,000. This is higher than most of the ultimate values used by policy-makers to decide whether an intervention is cost-effective. Our figures are roughly similar to those found in studies about the value of a statistical life year.</p> <p>Conclusion</p> <p>Estimates on the compensating income variation of diseases and health problems may provide useful information on the maximum acceptable cost-effectiveness ratio of medical interventions than those currently used by policy makers.</p

    Search for Point Sources of High Energy Neutrinos with AMANDA

    Get PDF
    This paper describes the search for astronomical sources of high-energy neutrinos using the AMANDA-B10 detector, an array of 302 photomultiplier tubes, used for the detection of Cherenkov light from upward traveling neutrino-induced muons, buried deep in ice at the South Pole. The absolute pointing accuracy and angular resolution were studied by using coincident events between the AMANDA detector and two independent telescopes on the surface, the GASP air Cherenkov telescope and the SPASE extensive air shower array. Using data collected from April to October of 1997 (130.1 days of livetime), a general survey of the northern hemisphere revealed no statistically significant excess of events from any direction. The sensitivity for a flux of muon neutrinos is based on the effective detection area for through-going muons. Averaged over the Northern sky, the effective detection area exceeds 10,000 m^2 for E_{mu} ~ 10 TeV. Neutrinos generated in the atmosphere by cosmic ray interactions were used to verify the predicted performance of the detector. For a source with a differential energy spectrum proportional to E_{nu}^{-2} and declination larger than +40 degrees, we obtain E^2(dN_{nu}/dE) <= 10^{-6}GeVcm^{-2}s^{-1} for an energy threshold of 10 GeV.Comment: 46 pages, 22 figures, 4 tables, submitted to Ap.

    Limits on diffuse fluxes of high energy extraterrestrial neutrinos with the AMANDA-B10 detector

    Full text link
    Data from the AMANDA-B10 detector taken during the austral winter of 1997 have been searched for a diffuse flux of high energy extraterrestrial muon-neutrinos, as predicted from, e.g., the sum of all active galaxies in the universe. This search yielded no excess events above those expected from the background atmospheric neutrinos, leading to upper limits on the extraterrestrial neutrino flux. For an assumed E^-2 spectrum, a 90% classical confidence level upper limit has been placed at a level E^2 Phi(E) = 8.4 x 10^-7 GeV cm^-2 s^-1 sr^-1 (for a predominant neutrino energy range 6-1000 TeV) which is the most restrictive bound placed by any neutrino detector. When specific predicted spectral forms are considered, it is found that some are excluded.Comment: Submitted to Physical Review Letter

    IceCube - the next generation neutrino telescope at the South Pole

    Get PDF
    IceCube is a large neutrino telescope of the next generation to be constructed in the Antarctic Ice Sheet near the South Pole. We present the conceptual design and the sensitivity of the IceCube detector to predicted fluxes of neutrinos, both atmospheric and extra-terrestrial. A complete simulation of the detector design has been used to study the detector's capability to search for neutrinos from sources such as active galaxies, and gamma-ray bursts.Comment: 8 pages, to be published with the proceedings of the XXth International Conference on Neutrino Physics and Astrophysics, Munich 200

    Investigate a Gas Well Performance Using Nodal Analysis

    Get PDF
    Gas condensate well has unique reservoir characteristics and ups and downs in well behaviour affect the production rate significantly. A proper optimization can reduce the operating cost, maximize the hydrocarbon recovery and increase the net present value. Well level optimization can be achieved through optimizing well parameters, such as wellhead, tubing size, and skin factor. All of these factors have been investigated using a real field of Thrace Basin and PROSPER simulation program. The history matching data are validated to identify the future performance prediction for the same reservoir deliverability following the period changes. Therefore, predicted results are compared and validated with measured field data to provide the best production practices. Moreover, the results show that the skin factor has a large influence on the production rate by 45% reduction. The reduction in the reservoir pressure declines the production rate dramatically resulted in 70% decline. While manipulating the wellhead pressure shows minor decline compare to tubing size that does not show any significant change to production rate

    Sensitivity of the IceCube Detector to Astrophysical Sources of High Energy Muon Neutrinos

    Full text link
    We present the results of a Monte-Carlo study of the sensitivity of the planned IceCube detector to predicted fluxes of muon neutrinos at TeV to PeV energies. A complete simulation of the detector and data analysis is used to study the detector's capability to search for muon neutrinos from sources such as active galaxies and gamma-ray bursts. We study the effective area and the angular resolution of the detector as a function of muon energy and angle of incidence. We present detailed calculations of the sensitivity of the detector to both diffuse and pointlike neutrino emissions, including an assessment of the sensitivity to neutrinos detected in coincidence with gamma-ray burst observations. After three years of datataking, IceCube will have been able to detect a point source flux of E^2*dN/dE = 7*10^-9 cm^-2s^-1GeV at a 5-sigma significance, or, in the absence of a signal, place a 90% c.l. limit at a level E^2*dN/dE = 2*10^-9 cm^-2s^-1GeV. A diffuse E-2 flux would be detectable at a minimum strength of E^2*dN/dE = 1*10^-8 cm^-2s^-1sr^-1GeV. A gamma-ray burst model following the formulation of Waxman and Bahcall would result in a 5-sigma effect after the observation of 200 bursts in coincidence with satellite observations of the gamma-rays.Comment: 33 pages, 13 figures, 6 table
    • 

    corecore