2,318 research outputs found

    The Evolution of the Stellar Hosts of Radio Galaxies

    Full text link
    We present new near-infrared images of z>0.8 radio galaxies from the flux-limited 7C-III sample of radio sources for which we have recently obtained almost complete spectroscopic redshifts. The 7C objects have radio luminosities about 20 times fainter than 3C radio galaxies at a given redshift. The absolute magnitudes of the underlying host galaxies and their scale sizes are only weakly dependent on radio luminosity. Radio galaxy hosts at z~2 are significantly brighter than the hosts of radio-quiet quasars at similar redshifts and the model AGN hosts of Kauffmann & Haehnelt (2000). There is no evidence for strong evolution in scale size, which shows a large scatter at all redshifts. The hosts brighten significantly with redshift, consistent with the passive evolution of a stellar population that formed at z>~3. This scenario is consistent with studies of host galaxy morphology and submillimeter continuum emission, both of which show strong evolution at z>~2.5. The lack of a strong ``redshift cutoff'' in the radio luminosity function to z>4 suggests that the formation epoch of the radio galaxy host population lasts >~1Gyr from z>~5 to z~3. We suggest these facts are best explained by models in which the most massive galaxies and their associated AGN form early due to high baryon densities in the centres of their dark matter haloes.Comment: To appear in A

    A submillimetre survey of the star-formation history of radio galaxies

    Full text link
    We present the results of the first major systematic submillimetre survey of radio galaxies spanning the redshift range 1 < z < 5. The primary aim of this work is to elucidate the star-formation history of this sub-class of elliptical galaxies by tracing the cosmological evolution of dust mass. Using SCUBA on the JCMT we have obtained 850-micron photometry of 47 radio galaxies to a consistent rms depth of 1 mJy, and have detected dust emission in 14 cases. The radio galaxy targets have been selected from a series of low-frequency radio surveys of increasing depth (3CRR, 6CE, etc), in order to allow us to separate the effects of increasing redshift and increasing radio power on submillimetre luminosity. Although the dynamic range of our study is inevitably small, we find clear evidence that the typical submillimetre luminosity (and hence dust mass) of a powerful radio galaxy is a strongly increasing function of redshift; the detection rate rises from 15 per cent at z 2.5, and the average submillimetre luminosity rises as (1+z)^3 out to z~4. Moreover our extensive sample allows us to argue that this behaviour is not driven by underlying correlations with other radio galaxy properties such as radio power, radio spectral index, or radio source size/age. Although radio selection may introduce other more subtle biases, the redshift distribution of our detected objects is in fact consistent with the most recent estimates of the redshift distribution of comparably bright submillimetre sources discovered in blank field surveys. The evolution of submillimetre luminosity found here for radio galaxies may thus be representative of massive ellipticals in general.Comment: 31 pages - 10 figures in main text, 3 pages of figures in appendix. This revised version has been re-structured, but the analysis and conclusions have not changed. Accepted for publication in MNRA

    HST and UKIRT imaging observations of z ~ 1 6C radio galaxies - I. The data

    Full text link
    The results of Hubble Space Telescope and UKIRT imaging observations are presented for a sample of 11 6C radio galaxies with redshifts 0.85 < z < 1.5. The observations of the 6C sources reveal a variety of different features, similar to those observed around the higher luminosity of the aligned emission appears less extreme in the case of the 6C radio galaxies. For both samples, the aligned emission clearly cannot be explained by a single emission mechanism; line emission and related nebular continuum emission, however, often provide a significant contribution to the aligned emission.Comment: 17 pages, 11 figures (figs 3,6,11 low resolution - full resolution images can be obtained from http://www.mrao.cam.ac.uk/~kji/ImagingFigs/). Accepted for publication in MNRA

    Deep spectroscopy of z~1 6C radio galaxies - II. Breaking the redshift-radio power degeneracy

    Get PDF
    The results of a spectroscopic analysis of 3CR and 6C radio galaxies at redshift z~1 are contrasted with the properties of lower redshift radio galaxies, chosen to be matched in radio luminosity to the 6C sources studied at z~1, thus enabling the P-z degeneracy to be broken. Partial rank correlations and principal component analysis have been used to determine which of z and P are the critical parameters underlying the observed variation of the ionization state andd kinematics of the emission line gas. [OII]/H-beta is shown to be a useful ionization mechanism diagnostic. Statistical analysis of the data shows that the ionization state of the emission line gas is strongly correlated with radio power, once the effects of other parameters are removed. No dependence of ionization state on z is observed, implying that the ionization state of the emission line gas is solely a function of the AGN properties rather than the hostt galaxy and/or environment. Statistical analysis of the kinematic properties of the emission line gas shows that these are strongly correlated independently withh both P and z. The correlation with redshift is the stronger of the two, suggesting that host galaxy composition or environment may play a role in producing the less extreme gas kinematics observed in the emission line regions of low redshift galaxies. For both the ionization and kinematic properties of thee galaxies, the independent correlations observed with radio size are strongest. Radio source age is a determining factor for the extended emission line regions.Comment: 10 pages, 5 figures, accepted for publication in MNRA

    MEROPS: the database of proteolytic enzymes, their substrates and inhibitors

    Get PDF
    Peptidases, their substrates and inhibitors are of great relevance to biology, medicine and biotechnology. The MEROPS database (http://merops.sanger.ac.uk) aims to fulfil the need for an integrated source of information about these. The database has hierarchical classifications in which homologous sets of peptidases and protein inhibitors are grouped into protein species, which are grouped into families, which are in turn grouped into clans. The database has been expanded to include proteolytic enzymes other than peptidases. Special identifiers for peptidases from a variety of model organisms have been established so that orthologues can be detected in other species. A table of predicted active-site residue and metal ligand positions and the residue ranges of the peptidase domains in orthologues has been added to each peptidase summary. New displays of tertiary structures, which can be rotated or have the surfaces displayed, have been added to the structure pages. New indexes for gene names and peptidase substrates have been made available. Among the enhancements to existing features are the inclusion of small-molecule inhibitors in the tables of peptidase–inhibitor interactions, a table of known cleavage sites for each protein substrate, and tables showing the substrate-binding preferences of peptidases derived from combinatorial peptide substrate libraries

    The importance of radio sources in accounting for the highest mass black holes

    Get PDF
    The most massive black holes lie in the most massive elliptical galaxies, and at low-z all radio-loud AGNs lie in giant ellipticals. This strongly suggests a link between radio-loudness and black hole mass. We argue that the increase in the radio-loud fraction with AGN luminosity in optically-selected quasar samples is consistent with this picture. We also use the ratio of black holes today to quasars at z~2 to conclude that the most bolometrically-luminous AGN, either radio-loud or radio quiet, are constrained to have lifetimes <~10^8 yr. If radio sources are associated with black holes of >~10^9 M_sun at all redshifts, then the same lifetime constraint applies to all radio sources with luminosities above L_5GHz ~ 10^24 W/Hz/sr.Comment: 6 pages, 2 figures. To appear in "Lifecycles of Radio Galaxies", ed J. Biretta et al., New Astronomy Review

    On Star Formation and the Non-Existence of Dark Galaxies

    Full text link
    We investigate whether a baryonic dark galaxy or `galaxy without stars' could persist indefinitely in the local universe, while remaining stable against star formation. To this end, a simple model has been constructed to determine the equilibrium distribution and composition of a gaseous protogalactic disk. Specifically, we determine the amount of gas that will transit to a Toomre unstable cold phase via the H2 cooling channel in the presence of a UV--X-ray cosmic background radiation field. All but one of the models are predicted to become unstable to star formation. Moreover, we find that all our model objects would be detectable via HI line emission, even in the case that star formation is potentially avoided. These results are consistent with the non-detection of isolated extragalactic HI clouds with no optical counterpart (galaxies without stars) by HIPASS. Additionally, where star formation is predicted to occur, we determine the minimum interstellar radiation field required to restore gravothermal stability, which we then relate to a minimum global star formation rate. This leads to the prediction of a previously undocumented relation between HI mass and star formation rate that is observed for a wide variety of dwarf galaxies in the HI mass range 10^8--10^10 M_sun. The existence of such a relation strongly supports the notion that the well observed population of dwarf galaxies represent the minimum rates of self-regulating star formation in the universe. (Barely abridged)Comment: 19 pages, 8 figures, TeX using emulateapj.cls, v2 accepted for publication in ApJ (16/8/5) with one figure deleted and a number of minor clarifying revision

    Molecular Clouds as Ensembles of Transient Cores

    Get PDF
    We construct models of molecular clouds that are considered as ensembles of transient cores. Each core is assumed to develop in the background gas of the cloud, grow to high density and decay into the background. The chemistry in each core responds to the dynamical state of the gas and to the gas-dust interaction. Ices are deposited on the dust grains in the core's dense phase, and this material is returned to the gas as the core expands to low density. The cores of the ensemble number typically one thousand and are placed randomly in position within the cloud, and are assigned a random evolutionary phase. The models are used to generate molecular line contour maps of a typical dark cloud. These maps are found to represent extremely well the characteristic features of observed maps of the dark cloud L673, which has been observed at both low and high resolutions. The computed maps are found to exhibit the general morphology of the observed maps, and to generate similar sizes of emitting regions, molecular column densities, and the separations between peaks of emissions of various molecular species. The models give insight into the nature of molecular clouds and the dynamical processes occurring within them, and significantly constrain dynamical and chemical processes in the interstellar medium.Comment: 29 pages, 8 figures. Accepted for publication in Ap
    • 

    corecore