186 research outputs found

    [C II] and ^(12)CO(1-0) Emission Maps in HLSJ091828.6+514223: A Strongly Lensed Interacting System at z=5.24

    Get PDF
    We present Submillimeter Array [C II] 158 μm and Karl G. Jansky Very Large Array ^(12)CO(1-0) line emission maps for the bright, lensed, submillimeter source at z = 5.2430 behind A 773: HLSJ091828.6+514223 (HLS0918). We combine these measurements with previously reported line profiles, including multiple ^(12)CO rotational transitions, [C I], water, and [N II], providing some of the best constraints on the properties of the interstellar medium in a galaxy at z > 5. HLS0918 has a total far-infrared (FIR) luminosity L _(FIR(8–1000 μm)) = (1.6 ± 0.1) × 10^(14) L_☉ μ^(–1), where the total magnification μ_(total) = 8.9 ± 1.9, via a new lens model from the [C II] and continuum maps. Despite a HyLIRG luminosity, the FIR continuum shape resembles that of a local LIRG. We simultaneously fit all of the observed spectral line profiles, finding four components that correspond cleanly to discrete spatial structures identified in the maps. The two most redshifted spectral components occupy the nucleus of a massive galaxy, with a source-plane separation <1 kpc. The reddest dominates the continuum map (demagnified L_(FIR, component) = (1.1 ± 0.2) × 10^(13) L_☉) and excites strong water emission in both nuclear components via a powerful FIR radiation field from the intense star formation. A third star-forming component is most likely a region of a merging companion (ΔV ~ 500 km s^(–1)) exhibiting generally similar gas properties. The bluest component originates from a spatially distinct region and photodissociation region analysis suggests that it is lower density, cooler, and forming stars less vigorously than the other components. Strikingly, it has very strong [N II] emission, which may suggest an ionized, molecular outflow. This comprehensive view of gas properties and morphology in HLS0918 previews the science possible for a large sample of high-redshift galaxies once ALMA attains full sensitivity

    Deep Herschel view of obscured star formation in the Bullet cluster

    Get PDF
    We use deep, five band (100–500 μm) data from the Herschel Lensing Survey (HLS) to fully constrain the obscured star formation rate, SFR_(FIR), of galaxies in the Bullet cluster (z = 0.296), and a smaller background system (z = 0.35) in the same field. Herschel detects 23 Bullet cluster members with a total SFRFIR = 144±14 M_☉ yr^(-1). On average, the background system contains brighter far-infrared (FIR) galaxies, with ~50% higher SFRFIR (21 galaxies; 207 ± 9 M_☉ yr^(-1)). SFRs extrapolated from 24 μm flux via recent templates (SFR_(24 µm)) agree well with SFRFIR for ~60% of the cluster galaxies. In the remaining ~40%, SFR24 µm underestimates SFR_(FIR) due to a significant excess in observed S_(100)/S_(24) (rest frame S_(75)/S_(18)) compared to templates of the same FIR luminosity

    ALMA detection of [CII] 158 micron emission from a strongly lensed z=2 star-forming galaxy

    Get PDF
    Our objectives are to determine the properties of the interstellar medium (ISM) and of star-formation in typical star-forming galaxies at high redshift. Following up on our previous multi-wavelength observations with HST, Spitzer, Herschel, and the Plateau de Bure Interferometer (PdBI), we have studied a strongly lensed z=2.013 galaxy, the arc behind the galaxy cluster MACS J0451+0006, with ALMA to measure the [CII] 158 micron emission line, one of the main coolants of the ISM. [CII] emission from the southern part of this galaxy is detected at 10 σ\sigma. Taking into account strong gravitational lensing, which provides a magnification of μ=49\mu=49, the intrinsic lensing-corrected [CII]158 micron luminosity is L(CII)=1.2×108L⊙L(CII)=1.2 \times 10^8 L_\odot. The observed ratio of [CII]-to-IR emission, L(CII)/L(FIR)≈(1.2−2.4)×10−3L(CII)/L(FIR) \approx (1.2-2.4) \times 10^{-3}, is found to be similar to that in nearby galaxies. The same also holds for the observed ratio L(CII)/L(CO)=2.3×103L(CII)/L(CO)=2.3 \times 10^3, which is comparable to that of star-forming galaxies and active galaxy nuclei (AGN) at low redshift. We utilize strong gravitational lensing to extend diagnostic studies of the cold ISM to an order of magnitude lower luminosity (L(IR)∼(1.1−1.3)×1011L⊙L(IR) \sim (1.1-1.3) \times 10^{11} L_\odot) and SFR than previous work at high redshift. While larger samples are needed, our results provide evidence that the cold ISM of typical high redshift galaxies has physical characteristics similar to normal star forming galaxies in the local Universe.Comment: 5 pages, 4 figures. Accepted for publication in Astronomy & Astrophysics, Letter

    Star formation in the massive cluster merger Abell 2744

    Full text link
    We present a comprehensive study of star-forming (SF) galaxies in the HST Frontier Field recent cluster merger A2744 (z=0.308). Wide-field, ultraviolet-infrared (UV-IR) imaging enables a direct constraint of the total star formation rate (SFR) for 53 cluster galaxies, with SFR{UV+IR}=343+/-10 Msun/yr. Within the central 4 arcmin (1.1 Mpc) radius, the integrated SFR is complete, yielding a total SFR{UV+IR}=201+/-9 Msun/yr. Focussing on obscured star formation, this core region exhibits a total SFR{IR}=138+/-8 Msun/yr, a mass-normalised SFR{IR} of Sigma{SFR}=11.2+/-0.7 Msun/yr per 10^14 Msun and a fraction of IR-detected SF galaxies f{SF}=0.080(+0.010,-0.037). Overall, the cluster population at z~0.3 exhibits significant intrinsic scatter in IR properties (total SFR{IR}, Tdust distribution) apparently unrelated to the dynamical state: A2744 is noticeably different to the merging Bullet cluster, but similar to several relaxed clusters. However, in A2744 we identify a trail of SF sources including jellyfish galaxies with substantial unobscured SF due to extreme stripping (SFR{UV}/SFR{IR} up to 3.3). The orientation of the trail, and of material stripped from constituent galaxies, indicates that the passing shock front of the cluster merger was the trigger. Constraints on star formation from both IR and UV are crucial for understanding galaxy evolution within the densest environments.Comment: Accepted by MNRAS. 12 pages, 7 figures (high resolution versions of Figs. 1 & 2 are available in the published PDF

    LoCuSS: The steady decline and slow quenching of star formation in cluster galaxies over the last four billion years

    Full text link
    We present an analysis of the levels and evolution of star formation activity in a representative sample of 30 massive galaxy clusters at 0.15<z<0.30 from the Local Cluster Substructure Survey (LoCuSS), combining wide-field Spitzer 24um data with extensive spectroscopy of cluster members. The specific-SFRs of massive (M>10^10 M_sun) star-forming cluster galaxies within r200 are found to be systematically 28% lower than their counterparts in the field at fixed stellar mass and redshift, a difference significant at the 8.7-sigma level. This is the unambiguous signature of star formation in most (and possibly all) massive star-forming galaxies being slowly quenched upon accretion into massive clusters, their SFRs declining exponentially on quenching time-scales in the range 0.7-2.0 Gyr. We measure the mid-infrared Butcher-Oemler effect over the redshift range 0.0-0.4, finding rapid evolution in the fraction (f_SF) of massive (M_K3M_sun/yr, of the form f_SF (1+z)^7.6. We dissect the origins of the Butcher-Oemler effect, revealing it to be due to the combination of a ~3x decline in the mean specific-SFRs of star-forming cluster galaxies since z~0.3 with a ~1.5x decrease in number density. Two-thirds of this reduction in the specific-SFRs of star-forming cluster galaxies is due to the steady cosmic decline in the specific-SFRs among those field galaxies accreted into the clusters. The remaining one-third reflects an accelerated decline in the star formation activity of galaxies within clusters. The slow quenching of star-formation in cluster galaxies is consistent with a gradual shut down of star formation in infalling spiral galaxies as they interact with the intra-cluster medium via ram-pressure stripping or starvation mechanisms. We find no evidence for the build-up of cluster S0 bulges via major nuclear star-burst episodes.Comment: 24 pages, 12 figures. Accepted for publication in Ap

    A high-resolution study of the X-ray emission and Sunyaev–Zel'dovich effect in the Bullet cluster (1E 0657−56)

    Get PDF
    High-resolution imaging of the Sunyaev–Zel'dovich (SZ) effect opens new possibilities for testing the presence of various high-energy particle populations in clusters of galaxies. A detailed X-ray analysis of the ‘Bullet cluster’ (1E 0657−56) with Chandra has revealed the presence of additional X-ray spectral components beyond a simple, single-temperature plasma in its X-ray spectra. X-ray methods alone are insufficient to elucidate the origins of these spectral components. We show that the morphology and magnitude of the SZ effect at high frequencies are critically dependent upon the mechanism by which the additional X-ray spectra are created. We examine the differences between the predicted SZ effect emission maps at 600 GHz assuming the X-ray spectra are composed of thermal gas with a steep power-law index component and also thermal gas with a significant contribution of strongly heated gas. A two-temperature model with a hot (kT ≃ 30–40 keV) second component is the most consistent with existing SZ data at high frequencies. However, significant morphological differences remain. High-angular-resolution SZ intensity maps at high frequencies in combination with deep X-ray data provide a new window into understanding particle energization processes in the hottest, massive merging galaxy clusters

    An evaluation of a nurse led unit: an action research study

    Get PDF
    This study is an exemplar of working in a participatory way with members of the public and health and social care practitioners as co-researchers. A Nurse Consultant Older People working in a nurse-led bed, intermediate care facility in a community hospital acted as joint project lead with an academic researcher. From the outset, members of the public were part of a team of 16 individuals who agreed an evaluation focus and were involved in all stages of the research process from design through to dissemination. An extensive evaluation reflecting all these stakeholders’ preferences was undertaken. Methods included research and audit including: patient and carer satisfaction questionnaire surveys, individual interviews with patients, carers and staff, staff surveys, graffiti board, suggestion box, first impressions questionnaire, patient tracking and a bed census. A key aim of the study has been capacity building of the research team members which has also been evaluated. In terms of impact, the co-researchers have developed research skills and knowledge, grown in confidence, developed in ways that have impacted elsewhere in their lives, developed posters, presented at conferences and gained a better understanding of the NHS. The evaluation itself has provided useful information on the processes and outcomes of intermediate care on the ward which was used to further improve the service

    Serendipitous detection of an overdensity of Herschel-SPIRE 250 micron sources south of MRC1138-26

    Full text link
    We report the serendipitous detection of a significant overdensity of Herschel-SPIRE 250 micron sources in the vicinity of MRC1138-26. We use an adaptive kernel density estimate to quantify the significance, including a comparison with other fields. The overdensity has a size of ~3.5-4' and stands out at ~5sigma with respect to the background estimate. No features with similar significance were found in four extragalactic control fields: GOODS-North, Lockman, COSMOS and UDS. The chance of having a similar overdensity in a field with the same number but randomly distributed sources is less than 2%. The clump is also visible as a low surface brightness feature in the Planck 857 GHz map. We detect 76 sources at 250 micron (with a signal-to-noise ratio greater than 3), in a region of 4' radius; 43 of those are above a flux density limit of 20 mJy. This is a factor of 3.6 in excess over the average in the four control fields, considering only the sources above 20 mJy. We also find an excess in the number counts of sources with 250 micron flux densities between 30 and 40 mJy, compared to deep extragalactic blank-field number counts. Assuming a fixed dust temperature (30 K) and emissivity (beta=1.5) a crude, blackbody-derived redshift distribution, zBB, of the detected sources is significantly different from the distributions in the control fields and exhibits a significant peak at zBB ~ 1.5, although the actual peak redshift is highly degenerate with the temperature. We tentatively suggest, based on zBB and the similar S250/S350 colours of the sources within the peak, that a significant fraction of the sources in the clump may be at a similar redshift. Since the overdensity lies ~7' south of the z=2.16 Spiderweb protocluster MRC1138-26, an intriguing possibility (that is presently unverifiable given the data in hand) is that it lies within the same large-scale structure.(abridged)Comment: 10 pages, 8 figures, accepted for publication in MNRA

    A Massive, Cooling-Flow-Induced Starburst in the Core of a Highly Luminous Galaxy Cluster

    Full text link
    In the cores of some galaxy clusters the hot intracluster plasma is dense enough that it should cool radiatively in the cluster's lifetime, leading to continuous "cooling flows" of gas sinking towards the cluster center, yet no such cooling flow has been observed. The low observed star formation rates and cool gas masses for these "cool core" clusters suggest that much of the cooling must be offset by astrophysical feedback to prevent the formation of a runaway cooling flow. Here we report X-ray, optical, and infrared observations of the galaxy cluster SPT-CLJ2344-4243 at z = 0.596. These observations reveal an exceptionally luminous (L_2-10 keV = 8.2 x 10^45 erg/s) galaxy cluster which hosts an extremely strong cooling flow (dM/dt = 3820 +/- 530 Msun/yr). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (740 +/- 160 Msun/yr), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool core clusters may not yet be fully established in SPT-CLJ2344-4243. This large star formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form via accretion of the intracluster medium, rather than the current picture of central galaxies assembling entirely via mergers.Comment: 11 pages, 3 figures, 1 table. Supplemental material contains 15 additional pages. Published in Natur

    Early Science with the Large Millimeter Telescope: observations of dust continuum and CO emission lines of cluster-lensed submillimetre galaxies at z=2.0-4.7

    Get PDF
    We present Early Science observations with the Large Millimeter Telescope, AzTEC 1.1mm continuum images and wide bandwidth spectra (73-111GHz) acquired with the Redshift Search Receiver, towards four bright lensed submillimetre galaxies identified through the Herschel Lensing Survey-snapshot and the Submillimetre Common-User Bolometer Array-2 Cluster Snapshot Survey. This pilot project studies the star formation history and the physical properties of the molecular gas and dust content of the highest redshift galaxies identified through the benefits of gravitational magnification. We robustly detect dust continuum emission for the full sample and CO emission lines for three of the targets. We find that one source shows spectroscopic multiplicity and is a blend of three galaxies at different redshifts (z=2.040, 3.252, and 4.680), reminiscent of previous high-resolution imaging follow-up of unlensed submillimetre galaxies, but with a completely different search method, that confirm recent theoretical predictions of physically unassociated blended galaxies. Identifying the detected lines as 12CO (Jup=2-5) we derive spectroscopic redshifts, molecular gas masses, and dust masses from the continuum emission. The mean H2 gas mass of the full sample is (2.0±0.2)×1011 M⊙/μ, and the mean dust mass is (2.0±0.2)×109 M⊙/μ, where μ≈2-5 is the expected lens amplification. Using these independent estimations we infer a gas-to-dust ratio of δGDR≈55-75, in agreement with other measurements of submillimetre galaxies. Our magnified high-luminosity galaxies fall on the same locus as other high-redshift submillimetre galaxies, extending the LCO′L^{\prime }_{\rm CO}-LFIR correlation observed for local luminous and ultraluminous infrared galaxies to higher far-infrared and CO luminositie
    • …
    corecore