54 research outputs found

    Effect of Curing On the Strength Behaviour of Lime-Fly Ashexpansive Soil Mixes

    Get PDF
    Expansive soils occupying almost 3 lakh km2 in the Indian subcontinent found to be highly problematic due to their extensive swelling and shrinkage nature. This rapid volume change leads to upliftment of foundations, differential settlements, heaving, rutting, etc. on the overlying structures. Concerning with the above problems an effective, economical and long-term method lime stabilisation was selected. In this work it is attempted to study the effect of curing period on the strength behaviour expansive soil treated with lime and fly ash by conducting triaxial shear (UU) test for 0, 3, 7, 14, 28 days with some twenty different proportions

    Bearing Capacity of A Strip Footing Resting On Treated And Untreated Soils

    Get PDF
    Expansive soils are highly susceptible to volumetric changes leading to rapid loss in the bearing capacity of footings resting on them. Among several techniques available to treat expansive soils, lime or fly ash stabilization gained prominence during the past few decades due to its abundance and adaptability. Chemical stabilization is widely used to treat expansive soils as it develops base exchange and cementation processes between clay particles.When expansive soils are treated with chemicals, it is essential to obtain the load-settlement response of footing resting on stabilized ground. In this study, Finite Element Analysis is performed using the commercial software, PLAXIS 2D, to obtain the load-settlement response of a strip footing resting on untreated and treated expansive soil. The bearing capacity of strip footing resting on treated soil is found to be about 150% higher than that of footing resting on untreated soil

    SELECTIVE CECAL BACTERIAL CHANGES MEDIATE THE ADVERSE EFFECTS ASSOCIATED WITH HIGH PALMOLEIN OR HIGH STARCH DIETS: PROPHYLACTIC ROLE OF FLAX OIL

    Get PDF
    Objective: Studies on the dynamics of gut bacteria in relation to metabolic adverse effects induced by high palmolein or high starch diets and in relation to health benefits of uncommon foods are lacking. Our aim was to assess under controlled conditions, the impact of vegetable based palmitic acid rich, high fat diet or a high starch diet on various metabolic parameters in relation to selective gut bacterial alterations in rats and also to see the effect of flaxseed oil supplementation on these parameters.Methods: Wistar Rats were fed for 4 mo either a control diet(CT) or a 30% high fat diet (HF) or HF diet with flax oil supplemented at two different doses (HFF1 and HFF2) or a 78% high starch diet (HC) after which they were sacrificed and analyzed for selective cecal bacteria, hematology, immune function and body composition.Results: High palmolein diet fed rats showed a decrease in colony forming units of lactobacillus, enterococci, streptococci bacteria and an increase in enterobacteriaceae in the cecum unlike HC fed rats. While high palmolein diet was found to impair immunity and increase inflammation, high starch diet affected body composition and lipid profile. Supplementing the flax seed oil ameliorated most of the adverse effects of high palmolein diet.Conclusions: Independent of energy intakes both high palmolein and high starch intakes have differential adverse effects. It can be envisaged that the adverse effects of feeding palmolein are mediated through immune impairment and inflammatory response, which in turn are associated with altered gut bacteria profile; and flax oil was found to have a prophylactic role in controlling these adverse effects. This study emphasizes the need to evaluate immunological as well as bacterial profile while assessing the safety of dietary fats in addition to traditional methods.Â

    Novel Sars-CoV-2 Variants & Therapeutic Effects

    Get PDF
    COVID-19 is a severe respiratory infection caused by coronavirus 2. (SARS-CoV-2). Even while SARS-CoV-2 predominantly affects the respiratory system, it can cause problems for other important organs as well. Multiple novel variations of concern have appeared since the beginning of the SARS-CoV-2 pandemic, including the Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529), all of which are linked to increased transmissibility and severity. Both the newly discovered variants and the most recent innovative treatments for the treatment of COVID-19 are discussed in this work. Care for people with this disease is discussed, with an emphasis on the need of clinical interprofessional teams, government health organisations, and community involvement

    The ENIGMA-Epilepsy working group: Mapping disease from large data sets

    Get PDF
    Epilepsy is a common and serious neurological disorder, with many different constituent conditions characterized by their electro clinical, imaging, and genetic features. MRI has been fundamental in advancing our understanding of brain processes in the epilepsies. Smaller‐scale studies have identified many interesting imaging phenomena, with implications both for understanding pathophysiology and improving clinical care. Through the infrastructure and concepts now well‐established by the ENIGMA Consortium, ENIGMA‐Epilepsy was established to strengthen epilepsy neuroscience by greatly increasing sample sizes, leveraging ideas and methods established in other ENIGMA projects, and generating a body of collaborating scientists and clinicians to drive forward robust research. Here we review published, current, and future projects, that include structural MRI, diffusion tensor imaging (DTI), and resting state functional MRI (rsfMRI), and that employ advanced methods including structural covariance, and event‐based modeling analysis. We explore age of onset‐ and duration‐related features, as well as phenomena‐specific work focusing on particular epilepsy syndromes or phenotypes, multimodal analyses focused on understanding the biology of disease progression, and deep learning approaches. We encourage groups who may be interested in participating to make contact to further grow and develop ENIGMA‐Epilepsy

    Event-based modelling in temporal lobe epilepsy demonstrates progressive atrophy from cross-sectional data

    Get PDF
    OBJECTIVE: Recent work has shown that people with common epilepsies have characteristic patterns of cortical thinning, and that these changes may be progressive over time. Leveraging a large multi-centre cross-sectional cohort, we investigated whether regional morphometric changes occur in a sequential manner, and whether these changes in people with mesial temporal lobe epilepsy and hippocampal sclerosis (MTLE-HS) correlate with clinical features. METHODS: We extracted regional measures of cortical thickness, surface area and subcortical brain volumes from T1-weighted (T1W) MRI scans collected by the ENIGMA-Epilepsy consortium, comprising 804 people with MTLE-HS and 1,625 healthy controls from 25 centres. Features with a moderate case-control effect size (Cohen's d≥0.5) were used to train an Event-Based Model (EBM), which estimates a sequence of disease-specific biomarker changes from cross-sectional data and assigns a biomarker-based fine-grained disease stage to individual patients. We tested for associations between EBM disease stage and duration of epilepsy, age of onset and anti-seizure medicine (ASM) resistance. RESULTS: In MTLE-HS, decrease in ipsilateral hippocampal volume along with increased asymmetry in hippocampal volume was followed by reduced thickness in neocortical regions, reduction in ipsilateral thalamus volume and, finally, increase in ipsilateral lateral ventricle volume. EBM stage was correlated to duration of illness (Spearman's ρ=0.293, p=7.03x10-16 ), age of onset (ρ=-0.18, p=9.82x10-7 ) and ASM resistance (AUC=0.59, p=0.043, Mann-Whitney U test). However, associations were driven by cases assigned to EBM stage zero, which represents MTLE-HS with mild or non-detectable abnormality on T1W MRI. SIGNIFICANCE: From cross-sectional MRI, we reconstructed a disease progression model that highlights a sequence of MRI changes that aligns with previous longitudinal studies. This model could be used to stage MTLE-HS subjects in other cohorts and help establish connections between imaging-based progression staging and clinical features

    Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study

    Get PDF
    Progressive functional decline in the epilepsies is largely unexplained. We formed the ENIGMA-Epilepsy consortium to understand factors that influence brain measures in epilepsy, pooling data from 24 research centres in 14 countries across Europe, North and South America, Asia, and Australia. Structural brain measures were extracted from MRI brain scans across 2149 individuals with epilepsy, divided into four epilepsy subgroups including idiopathic generalized epilepsies (n =367), mesial temporal lobe epilepsies with hippocampal sclerosis (MTLE; left, n = 415; right, n = 339), and all other epilepsies in aggregate (n = 1026), and compared to 1727 matched healthy controls. We ranked brain structures in order of greatest differences between patients and controls, by meta-Analysing effect sizes across 16 subcortical and 68 cortical brain regions. We also tested effects of duration of disease, age at onset, and age-by-diagnosis interactions on structural measures. We observed widespread patterns of altered subcortical volume and reduced cortical grey matter thickness. Compared to controls, all epilepsy groups showed lower volume in the right thalamus (Cohen's d = \uc3\ua2 '0.24 to \uc3\ua2 '0.73; P < 1.49 \uc3\u97 10 \uc3\ua2 '4), and lower thickness in the precentral gyri bilaterally (d = \uc3\ua2 '0.34 to \uc3\ua2 '0.52; P < 4.31 \uc3\u97 10 \uc3\ua2 '6). Both MTLE subgroups showed profound volume reduction in the ipsilateral hippocampus (d = \uc3\ua2 '1.73 to \uc3\ua2 '1.91, P < 1.4 \uc3\u97 10 \uc3\ua2 '19), and lower thickness in extrahippocampal cortical regions, including the precentral and paracentral gyri, compared to controls (d = \uc3\ua2 '0.36 to \uc3\ua2 '0.52; P < 1.49 \uc3\u97 10 \uc3\ua2 '4). Thickness differences of the ipsilateral temporopolar, parahippocampal, entorhinal, and fusiform gyri, contralateral pars triangularis, and bilateral precuneus, superior frontal and caudal middle frontal gyri were observed in left, but not right, MTLE (d = \uc3\ua2 '0.29 to \uc3\ua2 '0.54; P < 1.49 \uc3\u97 10 \uc3\ua2 '4). Contrastingly, thickness differences of the ipsilateral pars opercularis, and contralateral transverse temporal gyrus, were observed in right, but not left, MTLE (d = \uc3\ua2 '0.27 to \uc3\ua2 '0.51; P < 1.49 \uc3\u97 10 \uc3\ua2 '4). Lower subcortical volume and cortical thickness associated with a longer duration of epilepsy in the all-epilepsies, all-other-epilepsies, and right MTLE groups (beta, b < \uc3\ua2 '0.0018; P < 1.49 \uc3\u97 10 \uc3\ua2 '4). In the largest neuroimaging study of epilepsy to date, we provide information on the common epilepsies that could not be realistically acquired in any other way. Our study provides a robust ranking of brain measures that can be further targeted for study in genetic and neuropathological studies. This worldwide initiative identifies patterns of shared grey matter reduction across epilepsy syndromes, and distinctive abnormalities between epilepsy syndromes, which inform our understanding of epilepsy as a network disorder, and indicate that certain epilepsy syndromes involve more widespread structural compromise than previously assumed

    White matter abnormalities across different epilepsy syndromes in adults: an ENIGMA-Epilepsy study

    Get PDF
    The epilepsies are commonly accompanied by widespread abnormalities in cerebral white matter. ENIGMA-Epilepsy is a large quantitative brain imaging consortium, aggregating data to investigate patterns of neuroimaging abnormalities in common epilepsy syndromes, including temporal lobe epilepsy, extratemporal epilepsy, and genetic generalized epilepsy. Our goal was to rank the most robust white matter microstructural differences across and within syndromes in a multicentre sample of adult epilepsy patients. Diffusion-weighted MRI data were analysed from 1069 healthy controls and 1249 patients: temporal lobe epilepsy with hippocampal sclerosis (n = 599), temporal lobe epilepsy with normal MRI (n = 275), genetic generalized epilepsy (n = 182) and non-lesional extratemporal epilepsy (n = 193). A harmonized protocol using tract-based spatial statistics was used to derive skeletonized maps of fractional anisotropy and mean diffusivity for each participant, and fibre tracts were segmented using a diffusion MRI atlas. Data were harmonized to correct for scanner-specific variations in diffusion measures using a batch-effect correction tool (ComBat). Analyses of covariance, adjusting for age and sex, examined differences between each epilepsy syndrome and controls for each white matter tract (Bonferroni corrected at P < 0.001). Across ‘all epilepsies’ lower fractional anisotropy was observed in most fibre tracts with small to medium effect sizes, especially in the corpus callosum, cingulum and external capsule. There were also less robust increases in mean diffusivity. Syndrome-specific fractional anisotropy and mean diffusivity differences were most pronounced in patients with hippocampal sclerosis in the ipsilateral parahippocampal cingulum and external capsule, with smaller effects across most other tracts. Individuals with temporal lobe epilepsy and normal MRI showed a similar pattern of greater ipsilateral than contralateral abnormalities, but less marked than those in patients with hippocampal sclerosis. Patients with generalized and extratemporal epilepsies had pronounced reductions in fractional anisotropy in the corpus callosum, corona radiata and external capsule, and increased mean diffusivity of the anterior corona radiata. Earlier age of seizure onset and longer disease duration were associated with a greater extent of diffusion abnormalities in patients with hippocampal sclerosis. We demonstrate microstructural abnormalities across major association, commissural, and projection fibres in a large multicentre study of epilepsy. Overall, patients with epilepsy showed white matter abnormalities in the corpus callosum, cingulum and external capsule, with differing severity across epilepsy syndromes. These data further define the spectrum of white matter abnormalities in common epilepsy syndromes, yielding more detailed insights into pathological substrates that may explain cognitive and psychiatric co-morbidities and be used to guide biomarker studies of treatment outcomes and/or genetic research
    corecore