40 research outputs found

    Discovery of inward moving magnetic enhancements in sunspot penumbrae

    Full text link
    Sunspot penumbrae show a fine structure in continuum intensity that displays considerable dynamics. The magnetic field, in contrast, although also highly structured, has appeared to be relatively static. Here we report the discovery of inward moving magnetic enhancements in the penumbrae of two regular sunspots based on time series of SOHO/MDI magnetograms. Local enhancements of the LOS component of the magnetic field in the inner part of the penumbral region move inward to the umbra-penumbra boundary with a radial speed of about 0.3 km s−1^{-1}. These local inward-moving enhancements of the LOS component of the magnetic fields appear to be relatively common. They are associated with dark structures and tend to display downflows relatively to the penumbral background. Possible explanations are discussed.Comment: 4 pages, 4 figures, submitted to ApJ Letter

    The velocity structure of moving magnetic feature pairs around sunspots: support for the U-loop model

    Full text link
    Using data recorded by the Michelson Doppler Imager (MDI) instrument on the Solar and Heliospheric Observatory (SOHO), we have traced 123 pairs of opposite magnetic polarity moving magnetic features (MMFs) in three active regions NOAA ARs 8375, 0330 and 9575. At the time of observation, AR 8375 was young, AR 0330 mature, and AR 9575 decaying. The vertical velocity indicates that the elements of MMF pairs with polarity opposite to that of the sunspot support a downflow of around 50-100 m s−1^{-1}. The average Doppler shift difference between negative and positive elements of an MMF pair is about 150 m s−1^{-1} in AR 8375, 100 m s−1^{-1} in AR 0330, and 20 m s−1^{-1} in AR 9575. These observational results are in agreement with the model that MMF pairs are part of a U-loop emanating from the sunspot's magnetic canopy. According to this model the downflow is caused by the Evershed flow returning below the solar surface. For AR 8375, the horizontal velocity of MMFs ranges from 0.1 km s−1^{-1} to 0.7 km s−1^{-1}, and on average, the velocity of an MMF pair decreases significantly (from 0.6 km s−1^{-1} to 0.35 km s−1^{-1}) with increasing distance from the MMF's birth place. This result suggests that the change in MMF flow speed does not reflect the radial structure of the moat flow, but rather is intrinsic to the evolution of the MMF pairs. This result is also in agreement with the U-loop model of MMF pairs. We also find that properties of MMF pairs, most strikingly the lifetime, depend on the evolution stages of the parent sunspot. The mean lifetimes of MMF pairs in ARs 9575 and 0330 are 0.7 hours and 1.6 hours, respectively, which is considerably shorter than the 4 hours lifetime previously found for AR 8375.Comment: Submitted to A&

    Temporal evolution of the Evershed flow in sunspots. I. Observational characterization of Evershed clouds

    Full text link
    [Abridged] The magnetic and kinematic properties of the photospheric Evershed flow are relatively well known, but we are still far from a complete understanding of its nature. The evolution of the flow with time, which is mainly due to appearance of velocity packets called Evershed clouds (ECs), may provide information to further constrain its origin. Here we undertake a detailed analysis of the evolution of the Evershed flow by studying the properties of ECs. In this first paper we determine the sizes, proper motions, location in the penumbra, and frequency of appearance of ECs, as well as their typical Doppler velocities, linear and circular polarization signals, Stokes V area asymmetries, and continuum intensities. High-cadence, high-resolution, full vector spectropolarimetric measurements in visible and infrared lines are used to derive these parameters. We find that ECs appear in the mid penumbra and propage outward along filaments with large linear polarization signals and enhanced Evershed flows. The frequency of appearance of ECs varies between 15 and 40 minutes in different filaments. ECs exhibit the largest Doppler velocities and linear-to-circular polarization ratios of the whole penumbra. In addition, lines formed deeper in the atmosphere show larger Doppler velocities, much in the same way as the ''quiescent'' Evershed flow. According to our observations, ECs can be classified in two groups: type I ECs, which vanish in the outer penumbra, and type II ECs, which cross the outer penumbral boundary and enter the sunspot moat. Most of the observed ECs belong to type I. On average, type II ECs can be detected as velocity structures outside of the spot for only about 14 min. Their proper motions in the moat are significantly reduced with respect to the ones they had in the penumbra.Comment: Accepted for publication in A&

    Biofabrication of Anisotropic Gold Nanotriangles Using Extract of Endophytic Aspergillus clavatus as a Dual Functional Reductant and Stabilizer

    Get PDF
    Biosynthesis of metal and semiconductor nanoparticles using microorganisms has emerged as a more eco-friendly, simpler and reproducible alternative to the chemical synthesis, allowing the generation of rare forms such as nanotriangles and prisms. Here, we report the endophytic fungus Aspergillus clavatus, isolated from surface sterilized stem tissues of Azadirachta indica A. Juss., when incubated with an aqueous solution of chloroaurate ions produces a diverse mixture of intracellular gold nanoparticles (AuNPs), especially nanotriangles (GNT) in the size range from 20 to 35 nm. These structures (GNT) are of special interest since they possess distinct plasmonic features in the visible and IR regions, which equipped them with unique physical and optical properties exploitable in vital applications such as optics, electronics, catalysis and biomedicine. The reaction process was simple and convenient to handle and was monitored using ultraviolet–visible spectroscopy (UV–vis). The morphology and crystalline nature of the GNTs were determined from transmission electron microscopy (TEM), atomic force spectroscopy (AFM) and X-ray diffraction (XRD) spectroscopy. This proposed mechanistic principal might serve as a set of design rule for the synthesis of anisotropic nanostructures with desired architecture and can be amenable for the large scale commercial production and technical applications
    corecore