723 research outputs found
Sequential poly-ubiquitylation by specialized conjugating enzymes expands the versatility of a quality control ubiquitin ligase
The Doa10 quality control ubiquitin (Ub) ligase labels proteins with uniform lysine 48-linked poly-Ub (K48-pUB) chains for proteasomal degradation. Processing of Doa10 substrates requires the activity of two Ub conjugating enzymes. Here we show that the non-canonical conjugating enzyme Ubc6 attaches single Ub molecules not only to lysines but also to hydroxylated amino acids. These Ub moieties serve as primers for subsequent poly-ubiquitylation by Ubc7. We propose that the evolutionary conserved propensity of Ubc6 toΒ mount Ub on diverse amino acids augments the number of ubiquitylation sites within a substrate and thereby increases the target range of Doa10. Our work provides new insights on how the consecutive activity of two specialized conjugating enzymes facilitates the attachment of poly-Ub to very heterogeneous client molecules. Such stepwise ubiquitylation reactions most likely represent a more general cellular phenomenon that extends the versatility yet sustains the specificity of the Ub conjugation system
Chew-Bites, Jaw Movement Allocation and Bite Rate in Grazing Cattle as Identified by Acoustic Monitoring
Bite rate derives from the time budget of the biting and chewing processes of intake, which are both performed by jaw movements. A new type of jaw movement was revealed by acoustic monitoring in cattle - the chew-bite -which chews herbage already in the mouth and harvests fresh herbage with the same jaw movement (Laca et al., 1992). Chew-biting should enable the animal to reduce the total number of jaw movements performed per bite without reducing the number of chews per bite. We examined the variation among individuals in the allocation of jaw movements between the three types, and its relation to bite rate
The Importance of Patch Size in Estimating Steady-State Bite Rate in Grazing Cattle
Since the pioneering work of Black and Kenney (1984), various intake studies have been conducted at the spatial scale of a single feeding station ( patch ) to elucidate the processes that determine instantaneous intake rate (e.g. Laca et al., 1994). While these are well-suited for patch depletion studies, it is less clear how well they represent non-patchy and relatively homogeneous environments (Ungar & Griffiths, 2002). Clearly, grazing should be restricted to the upper grazing horizon (i.e. layer of bites), but sample duration may be insufficient to characterize steady-state behaviour, especially when grazing commences on an empty mouth. We examined the impact of feeding station size on bite rate and jaw movement allocation between bites and chews
Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion.
Drug resistance presents a challenge to the treatment of cancer patients. Many studies have focused on cell-autonomous mechanisms of drug resistance. By contrast, we proposed that the tumour micro-environment confers innate resistance to therapy. Here we developed a co-culture system to systematically assay the ability of 23 stromal cell types to influence the innate resistance of 45 cancer cell lines to 35 anticancer drugs. We found that stroma-mediated resistance is common, particularly to targeted agents. We characterized further the stroma-mediated resistance of BRAF-mutant melanoma to RAF inhibitors because most patients with this type of cancer show some degree of innate resistance. Proteomic analysis showed that stromal cell secretion of hepatocyte growth factor (HGF) resulted in activation of the HGF receptor MET, reactivation of the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-OH kinase (PI(3)K)-AKT signalling pathways, and immediate resistance to RAF inhibition. Immunohistochemistry experiments confirmed stromal cell expression of HGF in patients with BRAF-mutant melanoma and showed a significant correlation between HGF expression by stromal cells and innate resistance to RAF inhibitor treatment. Dual inhibition of RAF and either HGF or MET resulted in reversal of drug resistance, suggesting RAF plus HGF or MET inhibitory combination therapy as a potential therapeutic strategy for BRAF-mutant melanoma. A similar resistance mechanism was uncovered in a subset of BRAF-mutant colorectal and glioblastoma cell lines. More generally, this study indicates that the systematic dissection of interactions between tumours and their micro-environment can uncover important mechanisms underlying drug resistance
PetuniaβΓβhybrida floral scent production is negatively affected by highβtemperature growth conditions
Increasing temperatures due to changing global climate are interfering with plantβpollinator mutualism, an interaction facilitated mainly by floral colour and scent. Gas chromatographyβmass spectroscopy analyses revealed that increasing ambient temperature leads to a decrease in phenylpropanoidβbased floral scent production in two PetuniaβΓβhybrida varieties, P720 and Blue Spark, acclimated at 22/16 or 28/22βΒ°C (day/night). This decrease could be attributed to downβregulation of scentβrelated structural gene expression from both phenylpropanoid and shikimate pathways, and upβregulation of a negative regulator of scent production, emission of benzenoids V (EOBV). To test whether the negative effect of increased temperature on scent production can be reduced in flowers with enhanced metabolic flow in the phenylpropanoid pathway, we analysed floral volatile production by transgenic βBlue Sparkβ plants overexpressing CaMV 35Sβdriven Arabidopsis thaliana production of anthocyanin pigments 1 (PAP1) under elevated versus standard temperature conditions. Flowers of 35S:PAP1 transgenic plants produced the same or even higher levels of volatiles when exposed to a longβterm highβtemperature regime. This phenotype was also evident when analysing relevant gene expression as inferred from sequencing the transcriptome of 35S:PAP1 transgenic flowers under the two temperature regimes. Thus, upβregulation of transcription might negate the adverse effects of temperature on scent production.We demonstrate that petunia flowers produce less volatile phenylpropanoid compounds, in both scent bouquets and internal pools, in response to elevated temperatures. We reveal that the decrease in floral scent is correlated with reduced transcript levels of scentβrelated genes, and that the adverse effect of high temperature can be negated by expressing transcriptional upβregulators. We believe that the conclusions and implications drawn from the original data presented in our manuscript will be of particular interest to a broad spectrum of your readers, particularly in view of recent changes in global climate and the risk of environmental disruption of plantβpollinator mutualism.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/112003/1/pce12486-sup-0001-si.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/112003/2/pce12486.pd
GATA transcription factors drive initial Xist upregulation after fertilization through direct activation of a distal enhancer element
To ensure dosage compensation for X-linked genes between the sexes, one X chromosome is silenced during early embryonic development of female mammals. This process of X-chromosome inactivation (XCI) is initiated through upregulation of the RNA Xist from one X chromosome shortly after fertilization. Xist then mediates chromosome-wide gene silencing in cis and remains expressed in all cell types except the germ line and the pluripotent state, where XCI is reversed. The factors that drive Xist upregulation and thereby initiate XCI remain however unknown. We identify GATA transcription factors as potent Xist activators and demonstrate that they are essential for the activation of Xist in mice following fertilization. Through a pooled CRISPR activation screen we find that GATA1 can drive ectopic Xist expression in murine embryonic stem cells (mESCs). We demonstrate that all GATA factors can activate Xist directly via a GATA-responsive regulatory element (RE79) positioned 100 kb upstream of the Xist promoter. Additionally, GATA factors are essential for the induction of XCI in mouse preimplantation embryos, as simultaneous deletion of three members of the GATA family (GATA1/4/6) in mouse zygotes effectively prevents Xist upregulation. Thus, initiation of XCI and possibly its maintenance in distinct lineages of the preimplantation embryo is ensured by the combined activity of different GATA family members, and the absence of GATA factors in the pluripotent state likely contributes to X reactivation. We thus describe a form of regulation in which the combined action of numerous tissue-specific factors can achieve near-ubiquitous expression of a target gene
Expression profiles of acute lymphoblastic and myeloblastic leukemias with ALL-1 rearrangements
The ALL-1 gene is directly involved in 5-10% of ALLs and AMLs by fusion to
other genes or through internal rearrangements. DNA microarrays were utilized
to determine expression profiles of ALLs and AMLs with ALL-1 rearrangements.
These profiles distinguish those tumors from other ALLs and AMLs. The
expression patterns of ALL-1-associated tumors, in particular ALLs, involve
oncogenes, tumor suppressors, anti apoptotic genes, drug resistance genes etc.,
and correlate with the aggressive nature of the tumors. The genes whose
expression differentiates between ALLs with and without ALL-1 rearrangement
were further divided into several groups enabling separation of ALL-1-
associated ALLs into two subclasses. Further, AMLs with partial duplication of
ALL-1 vary in their expression pattern from AMLs in which ALL-1 had undergone
fusion to other genes. The extensive analysis described here draws attention to
genes which might have a direct role in pathogenesis
Recommended from our members
Tumor microenvironment induces innate RAF-inhibitor resistance through HGF secretion
Drug resistance remains a vexing problem in the treatment of cancer patients. While many studies have focused on cell autonomous mechanisms of drug resistance, we hypothesized that the tumor microenvironment may confer innate resistance to therapy. Here we developed a co-culture system to systematically assay the ability of 23 stromal cell types to influence the innate resistance of 45 cancer cell lines to 35 anti-cancer drugs. We found that stroma-mediated resistance is surprisingly common β particularly to targeted agents. We further characterized the stroma-mediated resistance of BRAF-mutant melanoma to RAF inhibition because most of these patients exhibit some degree of innate resistance1-4. Proteomic analysis showed that stromal secretion of the growth factor hepatocyte growth factor (HGF) resulted in activation of the HGF receptor MET, reactivation of the MAPK and PI3K/AKT pathways, and immediate resistance to RAF inhibition. Immunohistochemistry confirmed stromal HGF expression in patients with BRAF-mutant melanoma and a statistically significant correlation between stromal HGF expression and innate resistance to treatment. Dual inhibition of RAF and MET resulted in reversal of drug resistance, suggesting RAF/MET combination therapy as a potential therapeutic strategy for BRAF-mutant melanoma. A similar resistance mechanism was uncovered in a subset of BRAF-mutant colorectal and glioblastoma cell lines. More generally, these studies indicate that the systematic dissection of tumor-microenvironment interactions may reveal important mechanisms underlying drug resistance
Reno-protective effects of reninβangiotensin system blockade in type 2 diabetic patients: a systematic review and network meta-analysis
AIMS/HYPOTHESIS: This meta-analysis aimed to compare the renal outcomes between ACE inhibitor (ACEI)/angiotensin II receptor blocker (ARB) and other antihypertensive drugs or placebo in type 2 diabetes. METHODS: Publications were identified from Medline and Embase up to July 2011. Only randomised controlled trials comparing ACEI/ARB monotherapy with other active drugs or placebo were eligible. The outcome of end-stage renal disease, doubling of serum creatinine, microvascular complications, microalbuminuria, macroalbuminuria and albuminuria regression were extracted. Risk ratios were pooled using a random-effects model if heterogeneity was present; a fixed-effects model was used in the absence of heterogeneity. RESULTS: Of 673 studies identified, 28 were eligible (n = 13-4,912). In direct meta-analysis, ACEI/ARB had significantly lower risk of serum creatinine doubling (pooled RR = 0.66 [95% CI 0.52, 0.83]), macroalbuminuria (pooled RR = 0.70 [95% CI 0.50, 1.00]) and albuminuria regression (pooled RR 1.16 [95% CI 1.00, 1.39]) than other antihypertensive drugs, mainly calcium channel blockers (CCBs). Although the risks of end-stage renal disease and microalbuminuria were lower in the ACEI/ARB group (pooled RR 0.82 [95% CI 0.64, 1.05] and 0.84 [95% CI 0.61, 1.15], respectively), the differences were not statistically significant. The ACEI/ARB benefit over placebo was significant for all outcomes except microalbuminuria. A network meta-analysis detected significant treatment effects across all outcomes for both active drugs and placebo comparisons. CONCLUSIONS/INTERPRETATION: Our review suggests a consistent reno-protective effect of ACEI/ARB over other antihypertensive drugs, mainly CCBs, and placebo in type 2 diabetes. The lack of any differences in BP decrease between ACEI/ARB and active comparators suggest this benefit is not due simply to the antihypertensive effect
Functional Diversity and Structural Disorder in the Human Ubiquitination Pathway
The ubiquitin-proteasome system plays a central role in cellular regulation and protein quality control (PQC). The system is built as a pyramid of increasing complexity, with two E1 (ubiquitin activating), few dozen E2 (ubiquitin conjugating) and several hundred E3 (ubiquitin ligase) enzymes. By collecting and analyzing E3 sequences from the KEGG BRITE database and literature, we assembled a coherent dataset of 563 human E3s and analyzed their various physical features. We found an increase in structural disorder of the system with multiple disorder predictors (IUPred - E1: 5.97%, E2: 17.74%, E3: 20.03%). E3s that can bind E2 and substrate simultaneously (single subunit E3, ssE3) have significantly higher disorder (22.98%) than E3s in which E2 binding (multi RING-finger, mRF, 0.62%), scaffolding (6.01%) and substrate binding (adaptor/substrate recognition subunits, 17.33%) functions are separated. In ssE3s, the disorder was localized in the substrate/adaptor binding domains, whereas the E2-binding RING/HECT-domains were structured. To demonstrate the involvement of disorder in E3 function, we applied normal modes and molecular dynamics analyses to show how a disordered and highly flexible linker in human CBL (an E3 that acts as a regulator of several tyrosine kinase-mediated signalling pathways) facilitates long-range conformational changes bringing substrate and E2-binding domains towards each other and thus assisting in ubiquitin transfer. E3s with multiple interaction partners (as evidenced by data in STRING) also possess elevated levels of disorder (hubs, 22.90% vs. non-hubs, 18.36%). Furthermore, a search in PDB uncovered 21 distinct human E3 interactions, in 7 of which the disordered region of E3s undergoes induced folding (or mutual induced folding) in the presence of the partner. In conclusion, our data highlights the primary role of structural disorder in the functions of E3 ligases that manifests itself in the substrate/adaptor binding functions as well as the mechanism of ubiquitin transfer by long-range conformational transitions. Β© 2013 Bhowmick et al
- β¦