27 research outputs found

    Effect of Year, Season and Parity on Milk Production Traits in Murrah Buffaloes

    Get PDF
    Effects of year, season and parity on total lactation milk yield (TLMY), 305 day milk yield (305d MY) and average fat percentage for Murrah buffaloes maintained at dairy farm under GADVASU, Ludhiana, Punjab, during 2004-2008 were evaluated. Averaged TLMY, 305d MY and Fat percentage were 2191.8± 93.7 kg, 2091.1±87.06 kg and 7.12±0.11%. TLMY was found to be significantly affected by season (P<0.05) but not by year and parity. The highest milk yield was obtained in animals calving in winter followed by rainy and summer. Milk yield of buffaloes in winter was significantly higher than that of animals in summer (P<0.05). The TLMY increased over the years with highest milk yield in the year 2006 (2345.1±99.32kg). There was no consistent increase or decrease with the advance in years there on which may be due to the environmental variation in different years. TLMY was found lower in first parity and highest in fifth parity thereof decreasing (P<0.05). Similar results were obtained for 305d MY, where only the season was found significant (P<0.05). The average fat percentage was significantly affected by year and season (p<0.05). Milk fat percentage of buffaloes calved in winter was significantly (P<0.05) higher than that of the animals calved in summer. Similarly the fat percentage varied significantly among the parities with no consistent increase over the advancement of the parities

    Early transcriptome profile of goat peripheral blood mononuclear cells (PBMCs) infected with peste des petits ruminant's vaccine virus (Sungri/96) revealed induction of antiviral response in an interferon independent manner

    Get PDF
    Sungri/96 vaccine strain is considered the most potent vaccine providing long-term immunity against peste des petits ruminants (PPR) in India. Previous studies in our laboratory highlighted induction of robust antiviral response in an interferon independent manner at 48 h and 120 h post infection (p.i.). However, immune response at the earliest time point 6 h p.i. (time taken to complete one PPRV life cycle), in PBMCs infected with Sungri/96 vaccine virus has not been investigated. This study was taken up to understand the global gene expression profiling of goat PBMCs after Sungri/96 PPRV vaccine strain infection at 6 h post infection (p.i.). A total of 1926 differentially expressed genes (DEGs) were identified with 616 - upregulated and 1310 - downregulated. TLR7/TLR3, IRF7/IRF1, ISG20, IFIT1/IFIT2, IFITM3, IL27 and TREX1 were identified as key immune sensors and antiviral candidate genes. Interestingly, type I interferons (IFNα/β) were not differentially expressed at this time point as well. TREX1, an exonuclease which inhibits type I interferons at the early stage of virus infection was found to be highly upregulated. IL27, an important antiviral host immune factor was significantly upregulated. ISG20, an antiviral interferon induced gene with exonuclease activity specific to ssRNA viruses was highly expressed. Functional profiling of DEGs showed significant enrichment of immune system processes with 233 genes indicating initiation of immune defense response in host cells. Protein interaction network showed important innate immune molecules in the immune network with high connectivity. The study highlights important immune and antiviral genes at the earliest time point

    Whole-Genome Sequence of Sungri/96 Vaccine Strain of Peste des Petits Ruminants Virus

    Get PDF
    We report the complete genome sequence of the Sungri/96 vaccine strain of peste des petits ruminants virus (PPRV). The whole-genome nucleotide sequence has 89 to 99% identity with the available PPRV genome sequences in the NCBI database. This study helps to understand the epidemiological and molecular characteristics of the Sungri/96 strain

    Dysregulated miRNAome and Proteome of PPRV Infected Goat PBMCs Reveal a Coordinated Immune Response

    Get PDF
    In this study, the miRNAome and proteome of virulent Peste des petits ruminants virus (PPRV) infected goat peripheral blood mononuclear cells (PBMCs) were analyzed. The identified differentially expressed miRNAs (DEmiRNAs) were found to govern genes that modulate immune response based on the proteome data. The top 10 significantly enriched immune response processes were found to be governed by 98 genes. The top 10 DEmiRNAs governing these 98 genes were identified based on the number of genes governed by them. Out of these 10 DEmiRNAs, 7 were upregulated, and 3 were downregulated. These include miR-664, miR-2311, miR-2897, miR-484, miR-2440, miR-3533, miR-574, miR-210, miR-21-5p, and miR-30. miR-664 and miR-484 with proviral and antiviral activities, respectively, were upregulated in PPRV infected PBMCs. miR-210 that inhibits apoptosis was downregulated. miR-21-5p that decreases the sensitivity of cells to the antiviral activity of IFNs and miR-30b that inhibits antigen processing and presentation by primary macrophages were downregulated, indicative of a strong host response to PPRV infection. miR-21-5p was found to be inhibited on IPA upstream regulatory analysis of RNA-sequencing data. This miRNA that was also highly downregulated and was found to govern 16 immune response genes in the proteome data was selected for functional validation vis-a-vis TGFBR2 (TGF-beta receptor type-2). TGFBR2 that regulates cell differentiation and is involved in several immune response pathways was found to be governed by most of the identified immune modulating DEmiRNAs. The decreased luciferase activity in Dual Luciferase Reporter Assay indicated specific binding of miR-21-5p and miR-484 to their target thus establishing specific binding of the miRNAs to their targets.This is the first report on the miRNAome and proteome of virulent PPRV infected goat PBMCs

    Comparative and temporal transcriptome analysis of peste des petits ruminants virus infected goat peripheral blood mononuclear cells

    Get PDF
    Peste des petits ruminanats virus (PPRV), a morbillivirus causes an acute, highly contagious disease – peste des petits ruminants (PPR), affecting goats and sheep. Sungri/96 vaccine strain is widely used for mass vaccination programs in India against PPR and is considered the most potent vaccine providing long-term immunity. However, occurrence of outbreaks due to emerging PPR viruses may be a challenge. In this study, the temporal dynamics of immune response in goat peripheral blood mononuclear cells (PBMCs) infected with Sungri/96 vaccine virus was investigated by transcriptome analysis. Infected goat PBMCs at 48 h and 120 h post infection revealed 2540 and 2000 differentially expressed genes (DEGs), respectively, on comparison with respective controls. Comparison of the infected samples revealed 1416 DEGs to be altered across time points. Functional analysis of DEGs reflected enrichment of TLR signaling pathways, innate immune response, inflammatory response, positive regulation of signal transduction and cytokine production. The upregulation of innate immune genes during early phase (between 2-5 days) viz. interferon regulatory factors (IRFs), tripartite motifs (TRIM) and several interferon stimulated genes (ISGs) in infected PBMCs and interactome analysis indicated induction of broad-spectrum anti-viral state. Several Transcription factors – IRF3, FOXO3 and SP1 that govern immune regulatory pathways were identified to co-regulate the DEGs. The results from this study, highlighted the involvement of both innate and adaptive immune systems with the enrichment of complement cascade observed at 120 h p.i., suggestive of a link between innate and adaptive immune response. Based on the transcriptome analysis and qRT-PCR validation, an in vitro mechanism for the induction of ISGs by IRFs in an interferon independent manner to trigger a robust immune response was predicted in PPRV infection

    Not Available

    No full text
    Not AvailableClostridium chauvoei causes fatal black quarter infection in cattle and buffaloes. The quorum sensing (QS) system, a bacterial cell to cell communication process, of the pathogen was characterized in the current study. The results indicated that C. chauvoei lacked luxS (autoinducer-2) based quorum sensing as detected by the sensor strain Vibrio harveyi BB170. This was supported by absence of luxS gene in C. chauvoei genome. However, the genomic analysis indicated the presence of agrBD system in all three genomes of C. chauvoei available at the NCBI database. The AgrD, which synthesizes QS messenger autoinducing peptide, was a 44 amino acid protein which shared 59% identity and 75% similarity with AgrD of C. perfringens strain 13 and 56% identity (20% coverage) with Staphylococcus aureus N315. The functional cysteine amino acid was conserved in all the strains. The genomic organisation further suggests the presence of diguanylate cyclase, a gene responsible for synthesis of secondary messenger cyclic di-GMP, at 3’ immediate downstream of agrD gene. The real time expression analysis for agrD gene indicated that expression was better at 37 C (1.9e3.7 fold increase) compared to a higher temperature of 40 C. However, stable expression was observed at different growth stages (log and early stationary phase) with 0.8e1.4 fold changes in expression pattern. The results indicate the presence of a constitutively expressed agrBD quorum sensing system in C. chauvoei.Not Availabl

    Transcriptome analysis reveals the role of the PCP pathway in fipronil and endotoxin-induced lung damage

    No full text
    Abstract Background Pesticide residues in food and environment along with airborne contaminants like endotoxins pose a tangible threat to living beings. Fipronil, a broad-spectrum insecticide at acute doses in combination with endotoxin has been linked to airway inflammation. Wnt/PCP pathway plays important role in the pathogenesis of chronic inflammatory conditions by contributing to the release of downstream cytokines. However, there is no data on the PCP signaling pathway during fipronil-induced lung damage. This study aims to understand the molecular mechanisms underlying the pulmonary toxicity induced by fipronil alone or in combination with endotoxin. Methods We used a microarray approach to obtain a global view of the transcriptional responses of the lungs exposed to fipronil and endotoxin in a mice model. Lung tissues were harvested from male Swiss albino mice (n=42) following long term oral exposure to high and low doses of fipronil alone or in combination with endotoxin. The differentially expressed genes were analyzed by Ingenuity pathway analysis software to predict the top canonical pathways. The microarray data for selected genes was validated using quantitative PCR and immunohistochemistry. Results Both BAL fluid and histopathology analysis suggested lung damage and altered transcriptomic profile of lung following exposure to high and low dose of fipronil with or without endotoxin. PCP pathway was among the top upregulated canonical pathways following exposure to both doses of fipronil individually or with LPS. Low dose of fipronil increased the expression of WNT-6, MAPK-8, IL-4 and IL-17C while higher dose decreased the expression of MAPK-8 and IL-17C. The expression data verified by realtime PCR was in concordance with microarray data. Conclusion Long-term exposure to low (4.75 mg kg-1) and high (9.50 mg kg-1) dose of fipronil alone or in combination with endotoxins alters the histoarchitecture and transcriptome profile of lungs with the involvement of the PCP pathway. PCP pathway showed higher enrichment in low dose group of fipronil alone or in combination with LPS. The data from the study provides the insights of the potential damage on lungs caused by fipronil and endotoxin interaction and helps to better understand the mechanism of this complex relation

    Prokaryotic expression of chicken infectious anemia apoptin protein and characterization of its polyclonal antibodies

    No full text
    325-331In the present study recombinant VP3 (rVP3) was expressed in E.coli BL21 (DE3) (pLysS) and its polyclonal antibodies were characterized. SDS–PAGE analysis revealed that the expression of recombinant protein was maximum when induced with 1.5 mM IPTG for 6 h at 37ºC. The 6×His-tagged fusion protein was purified on Ni-NTA and confirmed by Western blot using CAV specific antiserum. Rabbits were immunized with purified rVP3 to raise anti-VP3 polyclonal antibodies. Polyclonal serum was tested for specificity and used for confirming expression of VP3 in HeLa cells transfected with pcDNA.cav.vp3 by indirect fluorescent antibody test (IFAT), flow cytometry and Western blot. Available purified rVP3 and polyclonal antibodies against VP3 may be useful to understand its functions which may lead to application of VP3 in cancer therapeutics

    Gene expression profiling of spontaneously occurring canine mammary tumours: Insight into gene networks and pathways linked to cancer pathogenesis.

    No full text
    Spontaneously occurring canine mammary tumours (CMTs) are the most common neoplasms of unspayed female dogs leading to thrice higher mortality rates than human breast cancer. These are also attractive models for human breast cancer studies owing to clinical and molecular similarities. Thus, they are important candidates for biomarker studies and understanding cancer pathobiology. The study was designed to explore underlying molecular networks and pathways in CMTs for deciphering new prognostic factors and therapeutic targets. To gain an insight into various pathways and networks associated with the development and pathogenesis of CMTs, comparative cDNA microarray expression profiling was performed using CMT tissues and healthy mammary gland tissues. Upon analysis, 1700 and 1287 differentially expressed genes (DEGs, P ≤ 0.05) were identified in malignant and benign tissues, respectively. DEGs identified from microarray analysis were further annotated using the Ingenuity Systems Pathway Analysis (IPA) tool for detection of deregulated canonical pathways, upstream regulators, and networks associated with malignant, as well as, benign disease. Top scoring key networks in benign and malignant mammary tumours were having central nodes of VEGF and BUB1B, respectively. Cyclins & cell cycle regulation and TREM1 signalling were amongst the top activated canonical pathways in CMTs. Other cancer related significant pathways like apoptosis signalling, dendritic cell maturation, DNA recombination and repair, Wnt/β-catenin signalling, etc. were also found to be altered. Furthermore, seven proteins (ANXA2, APOCII, CDK6, GATC, GDI2, GNAQ and MYH9) highly up-regulated in malignant tissues were identified by two-dimensional gel electrophoresis (2DE) and MALDI-TOF PMF studies which were in concordance with microarray data. Thus, the study has uncovered ample number of candidate genes associated with CMTs which need to be further validated as therapeutic targets and prognostic markers

    Genomic analysis of host – Peste des petits ruminants vaccine viral transcriptome uncovers transcription factors modulating immune regulatory pathways

    Get PDF
    International audiencePeste des petits ruminants (PPR), is an acute transboundary viral disease of economic importance, affecting goats and sheep. Mass vaccination programs around the world resulted in the decline of PPR outbreaks. Sungri 96 is a live attenuated vaccine, widely used in Northern India against PPR. This vaccine virus, isolated from goat works efficiently both in sheep and goat. Global gene expression changes under PPR vaccine virus infection are not yet well defined. Therefore, in this study we investigated the host-vaccine virus interactions by infecting the peripheral blood mononuclear cells isolated from goat with PPRV (Sungri 96 vaccine virus), to quantify the global changes in the transcriptomic signature by RNA-sequencing. Viral genome of Sungri 96 vaccine virus was assembled from the PPRV infected transcriptome confirming the infection and demonstrating the feasibility of building a complete non-host genome from the blood transcriptome. Comparison of infected transcriptome with control transcriptome revealed 985 differentially expressed genes. Functional analysis showed enrichment of immune regulatory pathways under PPRV infection. Key genes involved in immune system regulation, spliceosomal and apoptotic pathways were identified to be dysregulated. Network analysis revealed that the protein - protein interaction network among differentially expressed genes is significantly disrupted in infected state. Several genes encoding TFs that govern immune regulatory pathways were identified to co-regulate the differentially expressed genes. These data provide insights into the host - PPRV vaccine virus interactome for the first time. Our findings suggested dysregulation of immune regulatory pathways and genes encoding Transcription Factors (TFs) that govern these pathways in response to viral infection
    corecore