584 research outputs found

    The Case for a Paradigm Shift in Extension from Information-Centric to Community-Centric Programming

    Get PDF
    Since its establishment through the Smith-Lever Act, the Cooperative Extension Service has sought to use non-formal education programs centered on community needs to provide research-based information. However, the onset of the information age has transformed the way knowledge is shared and as a result altered the way people access information. Based on observations and program evaluations clients are more interested in the development of communities than passive dissemination of information from traditional Extension programs. Consequently, we assert that the current Extension paradigm of information-centric programming is no longer adequate and Extension should move toward one that is community centric

    Redox-Linked Domain Movements in the Catalytic Cycle of Cytochrome P450 Reductase

    Get PDF
    SummaryNADPH-cytochrome P450 reductase is a key component of the P450 mono-oxygenase drug-metabolizing system. There is evidence for a conformational equilibrium involving large-scale domain motions in this enzyme. We now show, using small-angle X-ray scattering (SAXS) and small-angle neutron scattering, that delivery of two electrons to cytochrome P450 reductase leads to a shift in this equilibrium from a compact form, similar to the crystal structure, toward an extended form, while coenzyme binding favors the compact form. We present a model for the extended form of the enzyme based on nuclear magnetic resonance and SAXS data. Using the effects of changes in solution conditions and of site-directed mutagenesis, we demonstrate that the conversion to the extended form leads to an enhanced ability to transfer electrons to cytochrome c. This structural evidence shows that domain motion is linked closely to the individual steps of the catalytic cycle of cytochrome P450 reductase, and we propose a mechanism for this

    Understanding the Logistics for the Distribution of Heme in Cells

    Get PDF
    [Image: see text] Heme is essential for the survival of virtually all living systems—from bacteria, fungi, and yeast, through plants to animals. No eukaryote has been identified that can survive without heme. There are thousands of different proteins that require heme in order to function properly, and these are responsible for processes such as oxygen transport, electron transfer, oxidative stress response, respiration, and catalysis. Further to this, in the past few years, heme has been shown to have an important regulatory role in cells, in processes such as transcription, regulation of the circadian clock, and the gating of ion channels. To act in a regulatory capacity, heme needs to move from its place of synthesis (in mitochondria) to other locations in cells. But while there is detailed information on how the heme lifecycle begins (heme synthesis), and how it ends (heme degradation), what happens in between is largely a mystery. Here we summarize recent information on the quantification of heme in cells, and we present a discussion of a mechanistic framework that could meet the logistical challenge of heme distribution

    Enzyme-catalyzed mechanism of isoniazid activation in class I and class III peroxidases.

    Get PDF
    There is an urgent need to understand the mechanism of activation of the frontline anti-tuberculosis drug isoniazid by the Mycobacterium tuberculosis catalase-peroxidase. To address this, a combination of NMR spectroscopic, biochemical, and computational methods have been used to obtain a model of the frontline anti-tuberculosis drug isoniazid bound to the active site of the class III peroxidase, horseradish peroxidase C. This information has been used in combination with the new crystal structure of the M. tuberculosis catalase-peroxidase to predict the mode of INH binding across the class I heme peroxidase family. An enzyme-catalyzed mechanism for INH activation is proposed that brings together structural, functional, and spectroscopic data from a variety of sources. Collectively, the information not only provides a molecular basis for understanding INH activation by the M. tuberculosis catalase-peroxidase but also establishes a new conceptual framework for testing hypotheses regarding the enzyme-catalyzed turnover of this compound in a number of heme peroxidases

    Solution structure of the cytochrome P450 reductase–cytochrome c complex determined by neutron scattering

    Get PDF
    Electron transfer in all living organisms critically relies on formation of complexes between the proteins involved. The function of these complexes requires specificity of the interaction to allow for selective electron transfer but also a fast turnover of the complex, and they are therefore often transient in nature, making them challenging to study. Here, using small-angle neutron scattering with contrast matching with deuterated protein, we report the solution structure of the electron transfer complex between cytochrome P450 reductase (CPR) and its electron transfer partner cytochrome c This is the first reported solution structure of a complex between CPR and an electron transfer partner. The structure shows that the interprotein interface includes residues from both the FMN- and FAD-binding domains of CPR. In addition, the FMN is close to the heme of cytochrome c but distant from the FAD, indicating that domain movement is required between the electron transfer steps in the catalytic cycle of CPR. In summary, our results reveal key details of the CPR catalytic mechanism, including interactions of two domains of the reductase with cytochrome c and motions of these domains relative to one another. These findings shed light on interprotein electron transfer in this system and illustrate a powerful approach for studying solution structures of protein-protein complexes

    Crystal structure of Trypanosoma cruzi heme peroxidase and characterization of its substrate specificity and compound I intermediate

    Get PDF
    The protozoan parasite Trypanosoma cruzi is the causative agent of American trypanosomiasis, otherwise known as Chagas disease. To survive in the host, the T. cruzi parasite needs antioxidant defense systems. One of these is a hybrid heme peroxidase, the T. cruzi ascorbate peroxidase-cytochrome c peroxidase enzyme (TcAPx-CcP). TcAPx-CcP has high sequence identity to members of the class I peroxidase family, notably ascorbate peroxidase (APX) and cytochrome c peroxidase (CcP), as well as a mitochondrial peroxidase from Leishmania major (LmP). The aim of this work was to solve the structure and examine the reactivity of the TcAPx-CcP enzyme. Low temperature electron paramagnetic resonance spectra support the formation of an exchange-coupled [Fe(IV)=O Trp233•+] compound I radical species, analogous to that used in CcP and LmP. We demonstrate that TcAPx-CcP is similar in overall structure to APX and CcP, but there are differences in the substrate-binding regions. Furthermore, the electron transfer pathway from cytochrome c to the heme in CcP and LmP is preserved in the TcAPx-CcP structure. Integration of steady state kinetic experiments, molecular dynamic simulations, and bioinformatic analyses indicates that TcAPx-CcP preferentially oxidizes cytochrome c but is still competent for oxidization of ascorbate. The results reveal that TcAPx-CcP is a credible cytochrome c peroxidase, which can also bind and use ascorbate in host cells, where concentrations are in the millimolar range. Thus, kinetically and functionally TcAPx-CcP can be considered a hybrid peroxidase.Fil: Freeman, Samuel L.. University of Bristol; Reino UnidoFil: Skafar, Vera. Universidad de la República; UruguayFil: Kwon, Hanna. University of Leicester; Reino UnidoFil: Fielding, Alistair J.. Liverpool John Moores University; Reino UnidoFil: Moody, Peter C.E.. University of Leicester; Reino UnidoFil: Martínez, Alejandra. Universidad de la República; UruguayFil: Issoglio, Federico Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidade Nova de Lisboa; PortugalFil: Inchausti, Lucas. Universidad de la Republica; Uruguay. Instituto de Investigaciones Biológicas "Clemente Estable"; UruguayFil: Smircich, Pablo. Instituto de Investigaciones Biológicas "Clemente Estable"; Uruguay. Universidad de la Republica; UruguayFil: Zeida, Ari. Universidad de la Republica; UruguayFil: Piacenza, Lucía. Universidad de la Republica; UruguayFil: Radi, Rafael. Universidad de la Republica; UruguayFil: Raven, Emma L.. University of Bristol; Reino Unid

    Volume 08

    Get PDF
    Introduction from Interim Dean Dr. Jennifer Apperson Indigenous Peoples and the Modern Era by Meghan Enzinna Who Says : How Selena Gomez and the Scene Attempt to Subvert the Popular Standards of Beauty by Casey Dawn Gailey Art by Raven Collins Meltdown on Social Media: Amy\u27s Baking Company Meets Kitchen Nightmares by Nathena Haddrill Art by Chiara Enriquez Design by Amelia Mcconnell Worth More Than a Thousand Words: A Visual Rhetorical Discussion of Virtual Reality by Examining Clouds Over Sidra by Alexander Morton Design by Emma Beckett The Sonata: An Analysis of Piano Sonata No. 14 in C Minor, K. 457 by Wolfgang Amadeus Mozart by Leah G. Parr Art by Briana Adhikusuma Skewed Perceptions of Masculinity in Chris Lynch\u27s Inexcusable by Taylor Embrey Photography by Rowan Davis Joy Like Short Grass : Death in James Dickey\u27s the Eagle\u27s Mile by Danielle Sisson Poster by Bianca Cherry Design by Melissa Cacho A Writer\u27s Evolution: Connecting Academic and Workplace Writing Within the Field of Nursing by Chloé Woodward Background and Research Designs on Service Dogs for Children with an Autism Spectrum Disorder by Catherine Rollins Photography by Carson Reeher Design by Landon Cooper Wallace Stevens: Meaning in Nature and Its Elements by Haley Vasquez Photography by Marlisha Stewart Building an Arcade Machine to Do Interdisciplinary Research into What Makes People Like Video Games by Eric Whitehead Poster by Sabrina Walker Design by James Bate
    corecore