141 research outputs found

    Refinement of mouse protocols for the study of platelet thromboembolic responses in vivo

    Get PDF
    Mouse models of thromboembolism are frequently used to investigate platelet function in vivo and, according to European Union (EU) legislation, must be conducted in the context of replacement, refinement and reduction. We have previously developed a refined real-time mouse model of thromboembolism as an alternative to models of thromboembolic mortality which inflict considerable pain and suffering. Real-time monitoring involves infusion of radiolabelled platelets into the circulation of anaesthetized mice, and platelet aggregation is measured as increases in platelet-associated counts in the pulmonary vasculature following injection of platelet agonists. This gives a definitive data set on the tissue localization and extent of platelet activation. We developed an additional, more simplistic alternative to mortality models based on blood microsampling which entails the measurement of circulating platelet counts following agonist stimulation. Blood microsamples were collected from the tail vein of anaesthetized mice at three different time points leading to a reduction in animal numbers. Platelet counts significantly dropped 1 minute after stimulation with collagen or thrombin and were restored over 10 minutes. These results correlate with those obtained via real-time monitoring and were confirmed by immunohistochemistry. Pre-treatment of mice with aspirin significantly inhibited the decrease in platelet counts following collagen. These data suggest that blood microsampling may be implemented as a simplistic refined alternative to mortality models of thromboembolism when specialized monitoring equipment, or use of radioactive isotopes for real-time monitoring, which remains the ‘gold standard’, is not feasible. Microsampling refines and reduces animal procedures in compliance with current EU legislatio

    Mechanical Stress Inference for Two Dimensional Cell Arrays

    Get PDF
    Many morphogenetic processes involve mechanical rearrangement of epithelial tissues that is driven by precisely regulated cytoskeletal forces and cell adhesion. The mechanical state of the cell and intercellular adhesion are not only the targets of regulation, but are themselves likely signals that coordinate developmental process. Yet, because it is difficult to directly measure mechanical stress {\it in vivo} on sub-cellular scale, little is understood about the role of mechanics of development. Here we present an alternative approach which takes advantage of the recent progress in live imaging of morphogenetic processes and uses computational analysis of high resolution images of epithelial tissues to infer relative magnitude of forces acting within and between cells. We model intracellular stress in terms of bulk pressure and interfacial tension, allowing these parameters to vary from cell to cell and from interface to interface. Assuming that epithelial cell layers are close to mechanical equilibrium, we use the observed geometry of the two dimensional cell array to infer interfacial tensions and intracellular pressures. Here we present the mathematical formulation of the proposed Mechanical Inverse method and apply it to the analysis of epithelial cell layers observed at the onset of ventral furrow formation in the {\it Drosophila} embryo and in the process of hair-cell determination in the avian cochlea. The analysis reveals mechanical anisotropy in the former process and mechanical heterogeneity, correlated with cell differentiation, in the latter process. The method opens a way for quantitative and detailed experimental tests of models of cell and tissue mechanics

    Active Tension Network model suggests an exotic mechanical state realized in epithelial tissues.

    Get PDF
    Mechanical interactions play a crucial role in epithelial morphogenesis, yet understanding the complex mechanisms through which stress and deformation affect cell behavior remains an open problem. Here we formulate and analyze the Active Tension Network (ATN) model, which assumes that the mechanical balance of cells within a tissue is dominated by cortical tension and introduces tension-dependent active remodeling of the cortex. We find that ATNs exhibit unusual mechanical properties. Specifically, an ATN behaves as a fluid at short times, but at long times supports external tension like a solid. Furthermore, an ATN has an extensively degenerate equilibrium mechanical state associated with a discrete conformal - "isogonal" - deformation of cells. The ATN model predicts a constraint on equilibrium cell geometries, which we demonstrate to approximately hold in certain epithelial tissues. We further show that isogonal modes are observed in the fruit y embryo, accounting for the striking variability of apical areas of ventral cells and helping understand the early phase of gastrulation. Living matter realizes new and exotic mechanical states, the study of which helps to understand biological phenomena

    Inherited human group IVA cytosolic phospholipase A(2) deficiency abolishes platelet, endothelial, and leucocyte eicosanoid generation

    Get PDF
    This research was supported by an Imperial College Junior Research Fellowship (to N.S.K.), Wellcome Trust program grant (0852551Z108/Z to J.A.M. and T.D.W.), British Heart Foundation Ph.D. studentship (FS/10/033/28271 to F.R.), British Heart Foundation project grant (PG/11/39/28890 to D.B.-B.), and by the Intramural Research Program of the U.S. National Institutes of Health, National Institute of Environmental Health Sciences (Z01 ES025034 to D.C.Z.)

    Comparative study of non-invasive force and stress inference methods in tissue

    Get PDF
    In the course of animal development, the shape of tissue emerges in part from mechanical and biochemical interactions between cells. Measuring stress in tissue is essential for studying morphogenesis and its physical constraints. Experimental measurements of stress reported thus far have been invasive, indirect, or local. One theoretical approach is force inference from cell shapes and connectivity, which is non-invasive, can provide a space-time map of stress and relies on prefactors. Here, to validate force- inference methods, we performed a comparative study of them. Three force-inference methods, which differ in their approach of treating indefiniteness in an inverse problem between cell shapes and forces, were tested by using two artificial and two experimental data sets. Our results using different datasets consistently indicate that our Bayesian force inference, by which cell-junction tensions and cell pressures are simultaneously estimated, performs best in terms of accuracy and robustness. Moreover, by measuring the stress anisotropy and relaxation, we cross-validated the force inference and the global annular ablation of tissue, each of which relies on different prefactors. A practical choice of force-inference methods in distinct systems of interest is discussed.Comment: 12 pages, 8 figures, EPJ E: Topical issue on "Physical constraints on morphogenesis and evolution

    Integration of contractile forces during tissue invagination

    Get PDF
    Contractile forces generated by the actomyosin cytoskeleton within individual cells collectively generate tissue-level force during epithelial morphogenesis. During Drosophila mesoderm invagination, pulsed actomyosin meshwork contractions and a ratchet-like stabilization of cell shape drive apical constriction. Here, we investigate how contractile forces are integrated across the tissue. Reducing adherens junction (AJ) levels or ablating actomyosin meshworks causes tissue-wide epithelial tears, which release tension that is predominantly oriented along the anterior–posterior (a-p) embryonic axis. Epithelial tears allow cells normally elongated along the a-p axis to constrict isotropically, which suggests that apical constriction generates anisotropic epithelial tension that feeds back to control cell shape. Epithelial tension requires the transcription factor Twist, which stabilizes apical myosin II, promoting the formation of a supracellular actomyosin meshwork in which radial actomyosin fibers are joined end-to-end at spot AJs. Thus, pulsed actomyosin contractions require a supracellular, tensile meshwork to transmit cellular forces to the tissue level during morphogenesis.American Cancer Society (grant PF-06-143-01-DDC)National Institutes of Health (U.S.) (NIH/NIGMS, P50 grant GM071508)National Institutes of Health (U.S.) (NIH/NIGMS, R01 grant GM079340)Eunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.) (grant 5R37HD15587)Howard Hughes Medical Institute (Investigator

    Cadherin-Dependent Cell Morphology in an Epithelium: Constructing a Quantitative Dynamical Model

    Get PDF
    Cells in the Drosophila retina have well-defined morphologies that are attained during tissue morphogenesis. We present a computer simulation of the epithelial tissue in which the global interfacial energy between cells is minimized. Experimental data for both normal cells and mutant cells either lacking or misexpressing the adhesion protein N-cadherin can be explained by a simple model incorporating salient features of morphogenesis that include the timing of N-cadherin expression in cells and its temporal relationship to the remodeling of cell-cell contacts. The simulations reproduce the geometries of wild-type and mutant cells, distinguish features of cadherin dynamics, and emphasize the importance of adhesion protein biogenesis and its timing with respect to cell remodeling. The simulations also indicate that N-cadherin protein is recycled from inactive interfaces to active interfaces, thereby modulating adhesion strengths between cells

    Mechanisms and mechanics of cell competition in epithelia

    Get PDF
    When fast-growing cells are confronted with slow-growing cells in a mosaic tissue, the slow-growing cells are often progressively eliminated by apoptosis through a process known as cell competition. The underlying signalling pathways remain unknown, but recent findings have shown that cell crowding within an epithelium leads to the eviction of cells from the epithelial sheet. This suggests that mechanical forces could contribute to cell elimination during cell competition

    There is more than one way to turn a spherical cellular monolayer inside out: type B embryo inversion in Volvox globator

    Get PDF
    Höhn S, Hallmann A. There is more than one way to turn a spherical cellular monolayer inside out: type B embryo inversion in Volvox globator. BMC Biology. 2011;9(1): 89.Background: Epithelial folding is a common morphogenetic process during the development of multicellular organisms. In metazoans, the biological and biomechanical processes that underlie such three-dimensional (3D) developmental events are usually complex and difficult to investigate. Spheroidal green algae of the genus Volvox are uniquely suited as model systems for studying the basic principles of epithelial folding. Volvox embryos begin life inside out and then must turn their spherical cell monolayer outside in to achieve their adult configuration; this process is called 'inversion.' There are two fundamentally different sequences of inversion processes in Volvocaceae: type A and type B. Type A inversion is well studied, but not much is known about type B inversion. How does the embryo of a typical type B inverter, V. globator, turn itself inside out? Results: In this study, we investigated the type B inversion of V. globator embryos and focused on the major movement patterns of the cellular monolayer, cell shape changes and changes in the localization of cytoplasmic bridges (CBs) connecting the cells. Isolated intact, sectioned and fragmented embryos were analyzed throughout the inversion process using light microscopy, confocal laser scanning microscopy, scanning electron microscopy and transmission electron microscopy techniques. We generated 3D models of the identified cell shapes, including the localizations of CBs. We show how concerted cell-shape changes and concerted changes in the position of cells relative to the CB system cause cell layer movements and turn the spherical cell monolayer inside out. The type B inversion of V. globator is compared to the type A inversion in V. carteri. Conclusions: Concerted, spatially and temporally coordinated changes in cellular shapes in conjunction with concerted migration of cells relative to the CB system are the causes of type B inversion in V. globator. Despite significant similarities between type A and type B inverters, differences exist in almost all details of the inversion process, suggesting analogous inversion processes that arose through parallel evolution. Based on our results and due to the cellular biomechanical implications of the involved tensile and compressive forces, we developed a global mechanistic scenario that predicts epithelial folding during embryonic inversion in V. globator
    corecore