4 research outputs found

    Campylobacteriosis : the role of poultry meat

    Get PDF
    The incidence of human infections caused by Campylobacter jejuni and Campylobacter coil, the main bacterial agents of gastrointestinal disease, has been increasing worldwide. Here, we review the role of poultry as a source and reservoir for Campylobacter. Contamination and subsequent colonization of broiler flocks at the farm level often lead to transmission of Campylobacter along the poultry production chain and contamination of poultry meat at retail. Yet Cainpylobacter prevalence in poultry, as well as the contamination level of poultry products, vary greatly between different countries so there are differences in the intervention strategies that need to be applied. Temporal patterns in poultry do not always coincide with those found in human infections. Studies in rural and urban areas have revealed differences in Campylobacter infections attributed to poultry, as poultry seems to be the predominant reservoir in urban, but not necessarily in rural, settings. Furthermore, foreign travel is considered a major risk factor in acquiring the disease, especially for individuals living in the northern European countries. Intervention strategies aimed at reducing Campylobacter colonization in poultry and focused at the farm level have been successful in reducing the number of Campylobacter cases in several countries. Increasing farm biosecurity and education of consumers are likely to limit the risk of infection. Overall, poultry is an important reservoir and source of human campylobacteriosis, although the contribution of other sources, reservoirs and transmission warrants more research. Clinical Microbiology and Infection (C) 2015 The Authors. Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases.Peer reviewe

    Genomic and phenotypic characteristics of Swedish C. jejuni water isolates

    No full text
    Campylobacter jejuni is the most common cause of bacterial gastroenteritis. Major reservoirs are warm-blooded animals, poultry in particular, but Campylobacter can also be transmitted via water. In this paper, we have taken a closer look at the biology and potential virulence of C. jejuni water isolates. Seven C. jejuni isolates from incoming surface water at water plants in Sweden were characterized with whole genome sequencing and phenotypical testing. Multi locus sequence typing analysis revealed that these isolates belonged to groups known to include both common (ST48CC) and uncommon (ST1275CC, ST683, ST793 and ST8853) human pathogens. Further genomic characterization revealed that these isolates had potential for arsenic resistance (due to presence of arsB gene in all isolates), an anaerobic dimethyl sulfoxide oxidoreductase (in three isolates) and lacked the MarR-type transcriptional regulator gene rrpB (in all but one isolate) earlier shown to be involved in better survival under oxidative and aerobic stress. As putative virulence factors were concerned, there were differences between the water isolates in the presence of genes coding for cytolethal distending toxin (cdtABC), Type VI secretion system and sialylated LOS, as well as in biofilm formation. However, all isolates were motile and could adhere to and invade the human HT-29 colon cancer cell line in vitro and induce IL-8 secretion suggesting potential to infect humans. This is, to the best of our knowledge, the first study where C. jejuni water isolates have been characterized using whole genome sequencing and phenotypical assays. We found differences and shared traits among the isolates but also potential to infect humans
    corecore