32 research outputs found

    CIS is a potent checkpoint in NK cell-mediated tumor immunity

    Get PDF
    The detection of aberrant cells by natural killer (NK) cells is controlled by the integration of signals from activating and inhibitory ligands and from cytokines such as IL-15. We identified cytokine-inducible SH2-containing protein (CIS, encoded by Cish) as a critical negative regulator of IL-15 signaling in NK cells. Cish was rapidly induced in response to IL-15, and deletion of Cish rendered NK cells hypersensitive to IL-15, as evidenced by enhanced proliferation, survival, IFN-γ production and cytotoxicity toward tumors. This was associated with increased JAK-STAT signaling in NK cells in which Cish was deleted. Correspondingly, CIS interacted with the tyrosine kinase JAK1, inhibiting its enzymatic activity and targeting JAK for proteasomal degradation. Cish -/- mice were resistant to melanoma, prostate and breast cancer metastasis in vivo, and this was intrinsic to NK cell activity. Our data uncover a potent intracellular checkpoint in NK cell-mediated tumor immunity and suggest possibilities for new cancer immunotherapies directed at blocking CIS function

    Loss-of-Function in SMAD4 Might Not Be Critical for Human Natural Killer Cell Responsiveness to TGF-β

    Get PDF
    We characterized the NK cell phenotype and function in three family members with Hereditary Hemorrhagic Telangiectasia (HHT) due to heterozygous SMAD4 mutations. Loss-of-function mutation in this gene did not induce developmental effects to alter CD56bright or CD56dim NK cell subset proportions in peripheral blood; and did not result in major differences in either their IL-15-induced proliferation, or their cytokine secretion response to TGF-β1. These data suggest that SMAD4 plays a redundant role in downstream TGF-β signaling in NK cells

    An investigation of type-1 interferon and the immune response against breast cancer metastasis

    No full text
    © 2016 Dr. Jai RautelaBreast cancer is a highly prevalent disease that, like many cancers, lacks effective therapies aimed at treating and preventing metastasis. Harnessing the host immune system to recognise and eliminate malignant cells has recently emerged as an effective therapeutic strategy in many cancers. However, response rates to these approved immunotherapies remain modest in the absence of a more detailed understanding of tumour immunity. The type I interferons are a family of cytokines that have long been understood to enhance the immune response to cancers, though their clinical application has led to underwhelming results in numerous types of cancer. This thesis provides new evidence that proposes the re-visitation of cancer immunotherapies that stimulate the type I interferon pathway. We show that host-derived type interferon is critical for the suppression of breast cancer metastasis through natural- killer cell activation. Induction of a type I IFN response by administering agents that mimic a viral infection (poly(I:C), a double-stranded RNA analog) proved to be powerful anti-metastatic agents in multiple pre-clinical models of triple-negative breast cancer (TNBC). This was linked to widespread immune activation which conferred NK cells with enhanced cytotoxic function to eliminate disseminated tumour cells. The efficacy of this novel immunotherapeutic approach was also found to rely upon the treatment setting in which it was used. Evidence is presented that demonstrates administration prior to primary tumour removal (neo-adjuvant therapy) as the only effective therapeutic regimen. We propose that such immunotherapies are most effective at eliminating circulating and early disseminated cells rather than established metastatic lesions. This provides some explanation to the inefficacy of previous interferon trials that were conducted in patients with late-stage metastatic disease. It also calls into question whether other immunotherapies could be used earlier in cancer treatment to maximise the chances of a clinical response. Finally, we uncover that expression of IRF9, a key transcription factor in the type-I interferon signaling pathway, accurately predicts TNBC patient prognosis. Loss of IRF9 in a patient’s primary tumour predicted significantly poorer overall survival due to metastatic spread. As we show that tumour cells are not directly responsible for the poly(I:C)-induced interferon response, we propose that patients with IRF9-negative TNBC could benefit from neo-adjuvant interferon-based immunotherapy

    Molecular insight into targeting the NK cell immune response to cancer

    Get PDF
    Natural Killer (NK) cells have long been considered an important part of the anti-tumor immune response due to their potent cytolytic and cytokine-secreting abilities. To date, a clear demonstration of the role NK cells play in human cancer is lacking, and there are still very few examples of therapies that efficiently exploit or enhance the spontaneous ability of NK cells to destroy the autologous cancer cells. Given the paradigm shift toward cancer immunotherapy over the past decade, there is a renewed push to understand how NK cell homeostasis and function are regulated in order to therapeutically harness these cells to treat cancer. This review will highlight recent advancements in our understanding of how growth factors impact on NK cell development, differentiation, survival and function with an emphasis on how these pathways may influence NK cell activity in the tumor microenvironment and control of cancer metastasis

    Loss-of-Function in SMAD4 Might Not Be Critical for Human Natural Killer Cell Responsiveness to TGF-β

    Get PDF
    We characterized the NK cell phenotype and function in three family members with Hereditary Hemorrhagic Telangiectasia (HHT) due to heterozygous SMAD4 mutations. Loss-of-function mutation in this gene did not induce developmental effects to alter CD56 or CD56 NK cell subset proportions in peripheral blood; and did not result in major differences in either their IL-15-induced proliferation, or their cytokine secretion response to TGF-β1. These data suggest that SMAD4 plays a redundant role in downstream TGF-β signaling in NK cells

    GM-CSF Quantity Has a Selective Effect on Granulocytic vs. Monocytic Myeloid Development and Function

    Get PDF
    GM-CSF promotes myeloid differentiation of cultured bone marrow cells into cells of the granulocytic and monocytic lineage; the latter can further differentiate into monocytes/macrophages and dendritic cells. How GM-CSF selects for these different myeloid fates is unresolved. GM-CSF levels can change either iatrogenically (e.g., augmenting leukopoiesis after radiotherapy) or naturally (e.g., during infection or inflammation) resulting in different immunological outcomes. Therefore, we asked whether the dose of GM-CSF may regulate the development of three types of myeloid cells. Here, we showed that GM-CSF acted as a molecular rheostat where the quantity determined which cell type was favored; moreover, the cellular process by which this was achieved was different for each cell type. Thus, low quantities of GM-CSF promoted the granulocytic lineage, mainly through survival. High quantities promoted the monocytic lineage, mainly through proliferation, whereas moderate quantities promoted moDCs, mainly through differentiation. Finally, we demonstrated that monocytes/macrophages generated with different doses of GM-CSF differed in function. We contend that this selective effect of GM-CSF dose on myeloid differentiation and function should be taken into consideration during pathophysiological states that may alter GM-CSF levels and during GM-CSF agonistic or antagonistic therapy

    Generation of novel Id2 and E2-2, E2A and HEB antibodies reveals novel Id2 binding partners and species-specific expression of E-proteins in NK cells

    No full text
    NK cells are cytotoxic lymphocytes with a key role in limiting tumour metastases. In mice, the NK cell lineage continually expresses high levels of the Inhibitor of DNA-binding 2 (Id2) protein and loss of Id2 is incongruous with their survival due to aberrant E-protein target gene activity. Using novel Id2 and E-protein antibodies that detect both mouse and human proteins, we have extensively characterised Id2 and E-protein expression in murine and human NK cells. We detected clear expression of E2 A and HEB, and to a lesser extent E2-2 in murine NK cells. In contrast HEB appears to be the major E-protein expressed in human NK cells, with minor E2-2 expression and surprisingly, no E2 A detected in primary NK cells nor human NK cell lines. These novel antibodies are also functional in immunofluorescence and immunoprecipitation. Mass spectrometry analysis of Id2 immuno-precipitated from murine NK cells revealed a number of novel associated proteins including several members of the SWI/SNF-related matrix-associated actin-dependent regulator chromatin (SMARC) and Mediator complex (MED) families. Taken together, these data highlight the utility of novel Id2 and E-protein antibodies and caution against mouse models for understanding Id2/E-protein biology in NK cells given their clearly disparate expression patternbetween species
    corecore