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We characterized the NK cell phenotype and function in three family members with

Hereditary Hemorrhagic Telangiectasia (HHT) due to heterozygous SMAD4 mutations.

Loss-of-function mutation in this gene did not induce developmental effects to alter

CD56bright or CD56dim NK cell subset proportions in peripheral blood; and did not

result in major differences in either their IL-15-induced proliferation, or their cytokine

secretion response to TGF-β1. These data suggest that SMAD4 plays a redundant role

in downstream TGF-β signaling in NK cells.

Keywords: SMAD4, loss-of-function mutations, Hereditary Hemorrhagic Telangiectasia, NK cell, TGF-β signaling,
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INTRODUCTION

Natural killer (NK) cells are bone marrow-derived innate lymphocytes that are abundant in
blood and lymphoid tissues and possess spontaneous anti-tumor activities (1). These activities
are triggered by engagement of receptors to stress-induced ligands and lack of engagement of
inhibitory self-ligands (2). The role of NK cell immunosurveillance in homeostasis is critical to
identify early transformed cells, to prevent metastasis of circulating tumor cells to different body
compartments (3, 4). The physiology of the inhibitory NK cell checkpoints is currently under
investigation and is being targeted for translational immunotherapeutic development (5). Both
murine and human NK cells are dependent on gamma chain cytokine signaling (e.g., IL-2 or IL-15)
for their development, differentiation, homeostasis, and priming (6). In contrast, TGF-β signaling
was shown to override NK cell metabolism in both species to inhibit their effector functions (7, 8).
In addition to inhibiting effector functions, TGF-β signaling was also shown to upregulate tissue
residency features in NK cells, suggesting its role in potentially differentiating conventional NK
cells into more pro-angiogenic and less cytotoxic innate lymphoid cell (ILC)1-like cells (9, 10).

The TGF-β superfamily is a well-conserved pathway and is highly homologous across different
species. The canonical signal transduction from the TGF-βRI/II heterocomplex phosphorylates
SMAD2 and 3 and activates a signal transduction mediated by a complex assembled by
several potential hetero/homo-combinations of phosphorylated SMAD2 and SMAD3. Subsequent
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interactions with the molecule SMAD4 translocate the complex
to the cell nucleus to induce transcriptional activity (11).
Although it is not a receptor / substrate, SMAD4 is believed
to be necessary to aid pSMAD2/3 -triggered TGF-β gene
responses. However, the specific function that SMAD4 adds to
the transcriptional complexes is still unclear (12).

In humans, Hereditary Hemorrhagic Telangiectasia (HHT)
results from autosomal dominant loss-of-function mutations for
specific components of the TGF-β superfamily: ENG, encoding
endoglin (HHT1), ACVRL1 (HHT2), or more rarely SMAD4.
Patients with HHT typically present with mucosal telangiectasia
resulting in epistaxis, gastrointestinal bleeding, and anemia.
Other clinical features include multi-organ arteriovenous
malformations, and colonic polyps (commonly observed only
in SMAD4-HHT patients). Under clinical management by
specialized services, these patients can have a relatively normal
lifespan (13). Studies phenotyping immune cell development in
these patients are yet to be comprehensively performed. One
recent report characterizing functions of IL-2-expanded NK
cells from a patient with a SMAD4-loss-of-function mutation,
demonstrated augmented response to TGF-β signaling and
suggested an unexpected inhibitory role of SMAD4 in TGF-β
signaling (14). However, observations from a single patient case
report cannot be reliably generalized.

In this current report, we studied different aspects of NK cell
phenotype and function from a mother, son and daughter with
HHT classified as SMAD4-loss-of-function. Complementary to
Cortez et al. we aimed to access a larger number of steady-state
observations from different NK cell subsets, and to characterize
responsiveness to TGF-β1 in vitro in a number of different
assays, ranging from proliferation to cytotoxicity and cytokine
production. We observed a number of parameters that suggest
that SMAD4 plays a redundant role into responsiveness to TGF-
β1 in human NK cells, with mutated cells displaying minimal
differences in numbers, subset proportions, proliferation,
cytotoxicity, and cytokine production along different maturation
phenotypic stages.

CASE REPORTS

Patient HHT 1949F, a 69-years-old woman, had suffered from
minor epistaxis andmajor bowel symptoms, mainly constipation,
since her teenage years. At age 37 years she underwent partial
colectomy for colonic cancer arising in a polyp. An episode of
hematemesis from a bleeding gastric polyp necessitated partial
gastrectomy, and she is now prone to recurrent hypoglycemic
episodes. There was no history of frequent infective episodes,
and she reported normal wound healing. Her father suffered
from frequent and copious nosebleeds and died from a
cerebrovascular event aged 56 years. A diagnosis of Juvenile
Polyposis/Hereditary Hemorrhagic Telangiectasia (JP/HHT)
was confirmed by identification of a frameshift mutation in
SMAD4 (NP_005350.1:p.Ser232GInfs∗3), leading to a premature
stop codon. Her son (Patient HHT 1965M,) and daughter
(Patient HHT 1967F, described below have both inherited
the SMAD4-mutation.

Patient HHT 1965M, aged 53, is the son of the above,
inherited the same SMAD4 mutation. He underwent
Whipple’s surgery in his early 20s, for upper GI bleeding
from extensive polyps. At 46- years of age, he suffered large
bowel intussusception from polyps. Recent identification of
significant iron deficiency anemia led to extensive endoscopic
procedures including antegrade push enteroscopy, colonoscopy,
and Pill-cam surveillance. Multiple ulcerated jejunal polyps
were removed endoscopically, though many remain. Three
polyps were also removed from the descending colon,
the rectum, and the anorectal verge. Other significant
past history included five episodes of pneumonia, starting
in childhood.

Patient HHT 1967F, aged 51, daughter of HHT 1949F,
experience significant skeletal pain and deterioration of bones
and teeth. She suffered from numerous co-morbidities since
childhood, including abdominal pain and rectal bleeding.
She has recurrent kidney stones and previous pyleonephritis.
Ongoing blood loss requires frequent iron infusions, and she
undergoes SMAD4 mutation-related active surveillance for
bowel cancer.

The patients above were coded in this study as HHT-1
(HHT-D 1956-M), HHT-2 (HHT-C 1967-F) and HHT-3 (HHT-
D 1949F). Blood samples from three healthy donors were used
controls: HD1 (male, 42 years old), HD2 (male, 28 years old), and
HD3 (female, 54 years old).

MATERIALS AND METHODS

Reagents
Commercial antibodies and reagents to detect human epitopes
and stimulating cytokines used in this study are listed below:

• Abcam (Cambridge, MA): SMAD4 (EP618Y), beta Actin
(mAbcam 8226).

• BD Biosciences (San Jose, CA): Annexin V-FITC / Apoptosis
Detection Kit, Fixable Viability Stain (FVS) and Liquid
Counting Beads.

• Biolegend (San Diego, CA): CD56-PE-Cy7 (HCD56), CD16-
eFluor450 (3G8), CD62L-PE-CF-610 (DREG-56) and T-bet-
PerCP (4B10).

• eBioscience (San Diego, CA): CD44-PE (IM7), and Eomes-
eFluor660 (WD1928).

• Invitrogen (Carlsbad, CA): 123count Counting Beads, and Cell
Trace Violet Cell Proliferation Kit.

• Miltenyi Biotec (Bergish Gladbach, Germany): CCR7-PerCP-
Vio700 (REA546), CD8-VioBlue (REA734), CD45-VioGreen
(5B1), CD49a-APC-Vio770 (TS2/7), CD49e-PE (NKI-
SAM1), NKp46-APC (9E2), Propidium Iodide (PI) Solution,
recombinant human IL-12 and human IL-15.

• MBL International (Woburn, MA): Recombinant human IL-
18.

• Peprotec (Rocky Hill, NJ): Recombinant human TGF-β1.
• R&D Systems (Minneapolis, MN): Human IFN-γ, human

GM-CSF and TGF-β1 Duoset ELISA Kits.
• Stem Cell Technologies (Vancouver, BC, Canada): EasySep

Human NK cell Isolation Kit.
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FIGURE 1 | Surface and intracellular marker-characterization between CD56bright and dim NK cell subsets from blood of HHT-SMAD4 donors. A,B: Peripheral NK

cells (CD3neg, CD14neg, CD66bneg, CD20neg, NKp46+), from three SMAD4-mutated donors, and three healthy donors, were segregated according their level of

CD56 expression (bright or dim) and analyzed for surface marker expression [CCR7 (A), CD16 (B), CD49a (C), CD49e (D), and CD62L (F)] and intracellular Eomes

(F). Circle dots represent health donors, and squares represent HHT donors. Color code was applied to represent the expression of each parameter in each donor

alongside (black = donor #1, blue = donor #2 and red = donor #3). The respective numeric MFI (median fluorescence intensity) is represented on each overlay for

each stain and donor. Unpaired T-test was used for comparative statistical analysis.

Patients
Inclusion required a clinical diagnosis of HHT, and confirmation
of the causative mutation.

NK Cell Preparations and Culture
Conditions
Heparinized peripheral blood (∼30mL) was obtained for each
patient or healthy age-matched donor and processed by Ficoll-
Paque density (1.077 g/mL) centrifugation, to isolate peripheral
blood mononuclear cells (PBMCs) and plasma (for posterior
TGF-β1 ELISA detection) from the red blood cell (RBC) fraction.
NK cells from PBMCs were enriched by negative selection
using the EasySep Human NK cell Isolation Kit (Stem Cell
Technologies) for functional in vitro assays. PBMC fraction was
also stained for either cell surface and intracellular markers,
or only for cell surface markers for cell analysis using a
BD FACS Fusion (BD Biosciences). Enriched NK cell subsets
(final cell purity above 95%) isolated by negative selection for

in vitro functional assays were maintained in RPMI 1640 media
supplemented with 10% FCS, 5% human serum from male AB
(Sigma-Aldrich, St. Louis, MO), 1% sodium pyruvate (Gibco,
Grand Island, NY), 1% Glutamax (Gibco), 10mM HEPES, 0.1%
2-mercaptoethanol (Gibco), 1% penicillin/streptomycin, and the
indicated concentrations of cytokine stimulation accordingly for
each assay.

GM-CSF and IFN-γ Production, and T-Bet
and Eomes Expression
High purity NK cells (CD3neg, CD4neg, CD8neg, CD14neg,
CD20neg, CD66bneg, NKp46+, CD56+) were plated at 6 × 103

cells per well in a V bottommicroplate containing a final amount
of 100 µL culture media per well. rIL-12 ([at]F= 1 ng/mL), rIL-
15 ([at]F= 50 ng/mL) and rIL-18 ([at]F= 50 ng/mL) were added
to the cultures with or without rTGF-β1 ([at]F= 6.25 ng/mL).
After 48 h culture, the microplate was centrifuged for recovering
supernatant for GM-CSF and IFN-γ ELISA. Cell pellets were
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FIGURE 2 | SMAD4-deficient NK cell subsets display normal Eomes, GM-CSF, IFN-γ expression patterns in response to TGF-β1. Purified NK cells, from three

SMAD4-mutated donors and three healthy donors, were segregated according fold change of Eomes, GM-CSF, IFN-γ, and T-bet expression after a 48 h in vitro

stimulation under IL-12+IL-15+IL-18 with or without TGF-β stimulation to evaluate their respective potential to express IFN-γ (A) and GM-CSF (B) from culture

supernatants, and intracellular T-bet (C) and Eomes (D) from cell pellets at endpoint. Results are expressed in fold change according unstimulated/TGF-β stimulated

for each biological replicate of HHT and HD donors. Circle dots represent health donors, and squares represent HHT donors. Color code was applied to represent the

expression of each parameter in each donor alongside (black = donor #1, blue = donor #2 and red = donor #3). Unpaired T-test was used for comparative

statistical analysis.
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washed 3x in cold PBS, then stained for intracellular T-bet and
Eomes and analyzed using a BD FACS Verse (BD Biosciences).

Target: Effector Cell Co-cultures
For cytotoxicity assays, fresh sorted NKp46+CD56+ NK cells
(as described above) were incubated with 5µM cell trace violet
(CTV) (Thermo Fisher Scientific) according the manufacturer’s
instructions and cultured for 48 h in media containing rIL-15

FIGURE 3 | SMAD4-deficient NK cells display similar killing patterns of target

K562 cells. In vitro-expanded K562 were stained for Annexin V and PI prior

(A), and after incubation for 4 h with purified NK cells previously treated for 48h

with IL-15 (B). Results are expressed as the ratios of alive K562 cells (Annexin

Vneg, PIneg), apoptotic K562 cells (Annexin V+), and necrotic K562 cells (PI+)

for each respectively, culture condition as the mean + SEM of each biological

replicates for HHT and HD samples. Circle dots represent health donors, and

squares represent HHT donors. Color code was applied to represent the

expression of each parameter in each donor alongside (black = donor #1, blue

= donor #2 and red = donor #3). Unpaired T-test was used for comparative

statistical analysis of the mean of the technical replicates of each donor.

([at]F= 50 ng/mL), with or without rTGF-β1 ([at]F= 6.25 ng/mL),
and then used to perform a 4 h co-culture assay using K562
target cells in a 1:4 ratio [ratio as described in Cortez et al.
(14)] in a 96-well V bottom microplate. After 4 h co-culture, cell
pellets were stained with Annexin V and PI (BD Biosciences)
according the manufacturer, and cells were assessed on a BD
FACSVerse cytometer (BD Biosciences), flow cytometric analysis
was performed using Flowjo (Treestar, Ashland, OR) software.
Target cell death was determined by apoptotic cells (Annexin
V+), and necrotic cells (PI+) from the CTVneg cell gate, and
compared with a plate containing K562 cells without NK cells.

Cell Proliferation
For proliferation assays, fresh sorted CD56dim NK cells (as
described above) were incubated with CTV according to the
manufacturer’s instructions, and 1 x 104 labeled cells were seeded
into 96-well V-bottom plates in culture media (200 µL/well)
supplemented with rIL-15 ([at]F= 50 ng/mL), with or without
rTGF-β1 ([at]F= 6.25 ng/mL). Time points (0, 40, 84, and 132 h)
were assessed on a BD FACS Verse cytometer (BD Biosciences),
flow cytometric analysis was performed using FlowJo (Treestar,
Ashland, OR) software, and division numbers were determined
using the precursor cohort-based method (15, 16).

Statistical Analysis
Statistical analyses (as shown in the Figure legends) were
performed using GraphPad Prism 7 software.

Ethics
This study was carried out in accordance with approval of
the Melbourne Health and Walter and Eliza Hall Institute of
Medical Research’s Human Research Ethics Committee (approval
number: 2013.081). All subjects gave written informed consent
for participation and publication.

RESULTS AND DISCUSSION

TGF-β signaling in NK cells is associated with:
phosphorylation in SMAD2 and 3, inhibition of IL-15-induced
metabolism/proliferation, simultaneous downregulation of
CD44, CD49e, and Eomes, and upregulation of CD16 and
CD49a expression (7, 10). SMAD family member 4 (SMAD4)
belongs to the SMAD family of transcription factor proteins
which combine in heterocomplexes with SMAD2 and 3, and
still have an unclear role during the signal transduction (11, 12).
In this case report, we obtained samples from patients carrying
a loss-of-function mutation in the SMAD4 (p.Ser232GInfs∗3)
expected to generate a protein without function and prone to
be degraded upon expression. We accessed by western blot
the SMAD4 protein expression, from fresh isolated NK cell by
negative selection, two SMAD4-mutants and 2 health donors, and
confirmed a lower expression of SMAD4 in both patient samples
(data not shown). SMAD4-mutant and healthy donor NK cell
phenotypes were assessed by gating the CD56bright and CD56dim

subsets from the viable CD3neg, CD14neg, CD20neg, CD45+,
CD66bneg, NKp46+ PBMC population. Although all donors
were clinically classified as infection-free at time of donation,
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SMAD4-mutant CD56bright and CD56dim NK cells displayed
decreased numbers in blood (Supplementary Figure 1). By
overlaying the respective NK cell subsets (CD56bright or dim)
from healthy donors (HD1, 2, and 3) and patients (HHT1,
2, and 3), multiparametric flow cytometry comparison of cell
surface markers revealed no consistent/significant differences
were observed in either of the SMAD4-deficient samples for
CCR7, CD16, CD49a, CD49e, CD62L, and Eomes expression
(Figures 1A–F, respectively, and Supplementary Figure 2).
CD62L expression can subdivide CD56dim NK cells into a
CD56dimCD62L+ population, which displays an intermediate
maturation status between the CD56bright NK cells (all CD62L+)
and CD56dimCD62Lneg subsets (17). SMAD4-deficient donor
HHT2 displayed a striking upregulation of CD62L in CD56dim

cells, but this effect was not seen in HHT1 or 3 who showed
levels similar to the healthy donors (Supplementary Figure 2).
Considering that TGF-β1 is a pleiotropic cytokine we also
assessed if its levels were systemically increased at steady-state
due to the clinical conditions associated with the SMAD4
mutation. However, we could not observe any major increase
of TGF-β1 in the plasma of SMAD4-deficient samples (data
not shown).

To ascertain the role of SMAD4 in the NK cell, CD56
subsets were sterilely sorted by negative selection to achieve
high purity, and compared in in vitro functional assays in
the presence of activating cytokines and presence or absence
of TGF-β1 to examine their responsiveness to this cytokine.
Combined with IL-15, IL-12, and IL-18 efficiently upregulate
and sustain expression of cytokines such as GM-CSF and IFN-
γ in human NK cells (18, 19), in mechanisms governed by
Eomes (to drive the NK cell maturation program) and T-bet
(to drive transcriptional regulation of cytokine genes such as
IFN-γ) (20). IFN-γ and GM-CSF expression was decreased

in SMAD4-deficient NK cells from all subjects by TGF-β1-
stimulation, similarly to health donors NK cells (Figures 2A,B;
Supplementary Figure 3). By contrast, T-bet expression was not
lowered, while Eomes was further inhibited in the presence of
TGF-β1 (Figures 2C,D; Supplementary Figure 3). Considering
that those effector molecules, among others, are involved in NK
cell immunosurveillance and control of target tumor cells, we
next speculated that the cytotoxicity function of the SMAD4-
deficient NK cells might be differentially affected.

Cortez et al. assessed IFN-γ production as an activation
outcome of SMAD4-deficient NK cells from one donor after
co-culture with K562 targets, therefore the target cell killing
was not measured (14). To address the role of SMAD4 in
cytotoxicity, we next sorted highly purified CD56dim NK cells, the
more cytotoxic subset [(21) and Supplementary Figure 3], from
healthy and SMAD4-deficient donors and primed them with IL-
15 prior to adding K562 targets in a 4:1 ratio as in the study of
Cortez et al. By using the Annexin V and PI method of K562
apoptosis quantification (22), we first observed a high viability in
target cell cultures without effector cells (Figure 3A), which was
dramatically decreased after the addition of IL-15-primed control
or SMAD4-deficient NK cells for 4 h (Figure 3B). However, live
and death in K562 cells were not significantly changed in co-
culture with SMAD4-deficient or WT NK cells in presence of
IL-15-treated NK cells This result suggested that cytotoxicity of
SMAD4-deficient NK cells is not suggested to be affected by
the mutation.

IL-15 signaling is a critical survival factor which also induces
NK cell priming and proliferation. This is attracting great interest
in manipulating this pathway to enhance NK cell function
for immunotherapy development (5, 6). TGF-β signaling was
previously shown by us and others to be an antagonistic pathway
that efficiently represses IL-15-induced proliferation in NK cells

FIGURE 4 | SMAD4-deficient NK cells display similar susceptibility to TGF-β-mediated inhibition of cellular proliferation as WT cells. CTV-labeled NK from three health

donors (A) and three SMAD4-mutated donors (B), were cultured in presence of rIL-15 and with or without addition of rTGF-β1 as indicated. For each condition at 40,

84, and 132 h intervals, the total live cells were enumerated and mean division number was calculated. Circle dots represent health donors, and squares represent

HHT donors. Color code was applied to represent the expression of each parameter in each donor alongside (black = donor #1, blue = donor #2 and red = donor

#3). Results are representative from triplicate of each biological replicate.
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(7, 23). We next examined whether SMAD4-deficient NK cells
would display differential proliferation potential in response to
IL-15 (Figures 4A,B). Conversely, TGF-β1 efficiently reduced the
mean division number of NK cells from both healthy donors
(Figure 4A), and SMAD4-defficient cells (Figure 4B). These
results suggest that SMAD4 deficiency does not cooperate with
SMAD2 and 3 to suppress IL-15-induced proliferation in human
NK cells.

CONCLUDING REMARKS

A limitation inherent in reports based on a single or few
donors, is the risk of over-interpretation from a limited sampling
size. SMAD4 mutations are rare, and obtaining a large sample
cohort is challenging. In the current study we described the
NK cell phenotype of three family members carrying the same
loss-of-function SMAD4 mutation. Although a previous study
suggested that SMAD4 acts as an inhibitory molecule to the
TGF-β signaling in human NK cells, our results suggests that this
molecule plays a redundant role for human NK cell development
and function. The clinical impact of SMAD4 mutations on
immunity has not been well-characterized, due to the rarity
of the condition, and the predominance of other clinical
features. Future studies using a larger cohort may determine
the redundancy of specific signaling members of the TGF-β
superfamily for NK cell biology, and help us understand the
complexity of their roles in the immune status of patients
carrying mutations in these genes.
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