4,936 research outputs found
The 106Cd(α, α)106Cd elastic scattering in a wide energy range for γ process studies
Date of Acceptance: 15/04/2015Alpha elastic scattering angular distributions of the 106Cd(α, α)106Cd reaction were measured at three energies around the Coulomb barrier to provide a sensitive test for the α + nucleus optical potential parameter sets. Furthermore, the new high precision angular distributions, together with the data available from the literature were used to study the energy dependence of the locally optimized α + nucleus optical potential in a wide energy region ranging from ELab=27.0MeV down to 16.1 MeV.The potentials under study are a basic prerequisite for the prediction of α-induced reaction cross sections and thus, for the calculation of stellar reaction rates used for the astrophysical γ process. Therefore, statistical model predictions using as input the optical potentials discussed in the present work are compared to the available 106Cd + alpha cross section data.Peer reviewe
70Ge(p,gamma)71As and 76Ge(p,n)76As cross sections for the astrophysical p process: sensitivity of the optical proton potential at low energies
The cross sections of the 70Ge(p,gamma)71As and 76Ge(p,n)76As reactions have
been measured with the activation method in the Gamow window for the
astrophysical p process. The experiments were carried out at the Van de Graaff
and cyclotron accelerators of ATOMKI. The cross sections have been derived by
measuring the decay gamma-radiation of the reaction products. The results are
compared to the predictions of Hauser-Feshbach statistical model calculations
using the code NON-SMOKER. Good agreement between theoretical and experimental
S factors is found. Based on the new data, modifications of the optical
potential used for low-energy protons are discussed.Comment: Accepted for publication in Phys. Rev.
Investigation of alpha-induced reactions on 130Ba and 132Ba and their importance for the synthesis of heavy p nuclei
Captures of alpha particles on the proton-richest Barium isotope, 130Ba, have
been studied in order to provide cross section data for the modeling of the
astrophysical gamma process. The cross sections of the 130Ba(alpha,gamma)134Ce
and 130Ba(alpha,n)133Ce reactions have been measured with the activation
technique in the center-of mass energy range between 11.6 and 16 MeV, close
above the astrophysically relevant energies. As a side result, the cross
section of the 132Ba(alpha,n)135Ce reaction has also been measured. The results
are compared with the prediction of statistical model calculations, using
different input parameters such as alpha+nucleus optical potentials. It is
found that the (alpha,n) data can be reproduced employing the standard
alpha+nucleus optical potential widely used in astrophysical applications.
Assuming its validity also in the astrophysically relevant energy window, we
present new stellar reaction rates for 130Ba(alpha,gamma)134Ce and
132Ba(alpha,gamma)136Ce and their inverse reactions calculated with the SMARAGD
statistical model code. The highly increased 136Ce(gamma,alpha)132Ba rate
implies that the p nucleus 130Ba cannot directly receive contributions from the
Ce isotopic chain. Further measurements are required to better constrain this
result.Comment: Accepted for publication in Phys. Rev.
Coulomb suppression of the stellar enhancement factor
It is commonly assumed that reaction measurements for astrophysics should be
preferably performed in the direction of positive Q value to minimize the
impact of the stellar enhancement factor, i.e. the difference between the
laboratory rate and the actual stellar rate. We show that the stellar effects
can be minimized in the charged particle channel, even when the reaction Q
value is negative. As a demonstration, the cross section of the astrophysically
relevant 85Rb(p,n)85Sr reaction has been measured by activation between 2.16 <
Ec.m. < 3.96 MeV and the astrophysical reaction rate for (p,n) as well as (n,p)
is directly inferred from the data. The presented arguments are also relevant
for other alpha and proton-induced reactions in the p and rp processes.
Additionally, our results confirm a previously derived modification of a global
optical proton potential.Comment: submitted to PR
- …
