287 research outputs found

    Molecular Docking-Based Design and Development of a Highly Selective Probe Substrate for UDP-glucuronosyltransferase 1A10

    Get PDF
    Intestinal and hepatic glucuronidation by the UDP-glucuronosyltransferases (UGTs) greatly affect the bioavailability of phenolic compounds. UGT1A10 catalyzes glucuronidation reactions in the intestine, but not in the liver. Here, our aim was to develop selective, fluorescent substrates to easily elucidate UGT1A10 function. To this end, homology models were constructed and used to design new substrates, and subsequently, six novel C3-substituted (4-fluorophenyl, 4-hydroxyphenyl, 4-methoxyphenyl, 4-(dimethylamino)phenyl, 4-methylphenyl, or triazole) 7-hydroxycoumarin derivatives were synthesized from inexpensive starting materials. All tested compounds could be glucuronidated to nonfluorescent glucuronides by UGT1A10, four of them highly selectively by this enzyme. A new UGT1A10 mutant, 1A10-H210M, was prepared on the basis of the newly constructed model. Glucuronidation kinetics of the new compounds, in both wild-type and mutant UGT1A10 enzymes, revealed variable effects of the mutation. All six new C3-substituted 7-hydroxycoumarins were glucuronidated faster by human intestine than by liver microsomes, supporting the results obtained with recombinant UGTs. The most selective 4(dimethylamino)phenyl and triazole C3-substituted 7-hydroxycoumarins could be very useful substrates in studying the function and expression of the human UGT1A10.Peer reviewe

    First-principles calculations of the self-trapped exciton in crystalline NaCl

    Full text link
    The atomic and electronic structure of the lowest triplet state of the off-center (C2v symmetry) self-trapped exciton (STE) in crystalline NaCl is calculated using the local-spin-density (LSDA) approximation. In addition, the Franck-Condon broadening of the luminescence peak and the a1g -> b3u absorption peak are calculated and compared to experiment. LSDA accurately predicts transition energies if the initial and final states are both localized or delocalized, but 1 eV discrepancies with experiment occur if one state is localized and the other is delocalized.Comment: 4 pages with 4 embeddded figure

    The Constitutionalisation of Contract Law in Finland

    Get PDF
    This chapter discusses the constitutionalisation of Contract law in Finland and makes frequent comparative references to the other Nordic systems. It aims to describe how Constitutional law has gradually started to influence Contract law. Moreover, the analysis seeks to predict some key future developments concerning Constitutional Contract law in Finland. This chapter illustrates how relevant constitutional actors consider these two areas of law and how these actors may sometimes collide because of key doctrines and the constitutional structure. It is concluded that references to Constitutional and Human rights law are not going to replace traditional Contract law argumentation. In most cases, nevertheless, Constitutional and Human rights law offer a useful means to clarify and modify the arguments used in traditional Contract law reasoning. The authors expect growing significance and legal relevance of the relationship between Constitutional law and Contract law.Peer reviewe

    Molecular docking and oxidation kinetics of 3-phenyl coumarin derivatives by human CYP2A13

    Get PDF
    CYP2A13 enzyme is expressed in human extrahepatic tissues, while CYP2A6 is a hepatic enzyme. Reactions catalysed by CYP2A13 activate tobacco-specific nitrosamines and some other toxic xenobiotics in lungs. To compare oxidation characteristics and substrate-enzyme active site interactions in CYP2A13 vs CYP2A6, we evaluated CYP2A13 mediated oxidation characteristics of 23 coumarin derivatives and modelled their interactions at the enzyme active site. CYP2A13 did not oxidise six coumarin derivatives to corresponding fluorescent 7-hydroxycoumarins. The K-m-values of the other coumarins varied 0.85-97 mu M, V-max-values of the oxidation reaction varied 0.25-60 min(-1), and intrinsic clearance varied 26-6190 kL/min*mol CYP2A13). K-m of 6-chloro-3-(3-hydroxyphenyl)-coumarin was 0.85 (0.55-1.15 95% confidence limit) mu M and V-max 0.25 (0.23-0.26) min(-1), whereas K-m of 6-hydroxy-3-(3-hydroxyphenyl)-coumarin was 10.9 (9.9-11.8) mu M and V-max 60 (58-63) min(-1). Docking analyses demonstrated that 6-chloro or 6-methoxy and 3-(3-hydroxyphenyl) or 3-(4-trifluoromethylphenyl) substituents of coumarin increased affinity to CYP2A13, whereas 3-triazole or 3-(3-acetate phenyl) or 3-(4-acetate phenyl) substituents decreased it. The active site of CYP2A13 accepts more diversified types of coumarin substrates than the hepatic CYP2A6 enzyme. New sensitive and convenient profluorescent CYP2A13 substrates were identified, such as 6-chloro-3-(3-hydroxyphenyl)-coumarin having high affinity and 6-hydroxy-3-(3-hydroxyphenyl)-coumarin with high intrinsic clearance

    Substrate Selectivity of Coumarin Derivatives by Human CYP1 Enzymes: In Vitro Enzyme Kinetics and In Silico Modeling

    Get PDF
    Of the three enzymes in the human cytochrome P450 family 1, CYP1A2 is an important enzyme mediating metabolism of xenobiotics including drugs in the liver, while CYP1A1 and CYP1B1 are expressed in extrahepatic tissues. Currently used CYP substrates, such as 7-ethoxycoumarin and 7-ethoxyresorufin, are oxidized by all individual CYP1 forms. The main aim of this study was to find profluorescent coumarin substrates that are more selective for the individual CYP1 forms. Eleven 3-phenylcoumarin derivatives were synthetized, their enzyme kinetic parameters were determined, and their interactions in the active sites of CYP1 enzymes were analyzed by docking and molecular dynamic simulations. All coumarin derivatives and 7-ethoxyresorufin and 7-pentoxyresorufin were oxidized by at least one CYP1 enzyme. 3-(3-Methoxyphenyl)-6-methoxycoumarin (19) was 7-O-demethylated by similar high efficiency [21-30 ML/(min.mol CYP)] by all CYP1 forms and displayed similar binding in the enzyme active sites. 3-(3-Fluoro-4-acetoxyphenyl)coumarin (14) was selectively 7-O-demethylated by CYP1A1, but with low efficiency [0.16 ML/(min mol)]. This was explained by better orientation and stronger H-bond interactions in the active site of CYP1A1 than that of CYP1A2 and CYP1B1. 3-(4-Acetoxyphenyl)-6-chlorocoumarin (20) was 7-O-demethylated most efficiently by CYP1B1 [53 ML/(min.mol CYP)], followed by CYP1A1 [16 ML/(min.mol CYP)] and CYP1A2 [0.6 ML/(min.mol CYP)]. Variations in stabilities of complexes between 20 and the individual CYP enzymes explained these differences. Compounds 14, 19, and 20 are candidates to replace traditional substrates in measuring activity of human CYP1 enzymes

    Power, Connected Coalitions, and Efficiency: Challenges to the Council of the European Union

    Full text link
    This article is concerned with challenges to reforming the voting procedures of the Council of the European Union (EU). The next major waves of EU enlargement will cause the Union to increase to a membership of first twenty-one, and then twenty-six or possibly even more states. How does enlargement affect the Council's inherent "capacity to act" under the currently used qualified majority voting rule? It is demon strated here that the expected increase in EU membership will most likely induce a larger "status quo bias" as compared to the present situation in the Council if the crucial majority decision quota is not lowered. In addition, the article is responding to some criticism that has been applied against assessing the leverage of EU governments in one of the EU's most important institutions: the Council of the EU. By resorting to techniques that capture the influence of a priori coalitions on the one hand and "connected coalitions" among EU governments on the other—applying n- person cooperative game theory—the piece illustrates how the assessment of relative voting leverage in the framework of weighted voting systems may be extended and applied to situations in which the specific distribu tion of members' preferences is known. These calculations are again relevant in the face of the upcoming rounds of EU enlargement and projects for institutional reform.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68064/2/10.1177_019251219902000404.pd

    Cellobiohydrolase from Trichoderma reesei

    Full text link

    A Comprehensive Evaluation of Sdox, a Promising H2S-Releasing Doxorubicin for the Treatment of Chemoresistant Tumors

    Get PDF
    Sdox is a hydrogen sulfide (H2S)-releasing doxorubicin effective in P-glycoprotein-overexpressing/doxorubicin-resistant tumor models and not cytotoxic, as the parental drug, in H9c2 cardiomyocytes. The aim of this study was the assessment of Sdox drug-like features and its absorption, distribution, metabolism, and excretion (ADME)/toxicity properties, by a multi- and transdisciplinary in silico, in vitro, and in vivo approach. Doxorubicin was used as the reference compound. The in silico profiling suggested that Sdox possesses higher lipophilicity and lower solubility compared to doxorubicin, and the off-targets prediction revealed relevant differences between Dox and Sdox towards several cancer targets, suggesting different toxicological profiles. In vitro data showed that Sdox is a substrate with lower affinity for P-glycoprotein, less hepatotoxic, and causes less oxidative damage than doxorubicin. Both anthracyclines inhibited CYP3A4, but not hERG currents. Unlike doxorubicin, the percentage of zebrafish live embryos at 72 hpf was not affected by Sdox treatment. In conclusion, these findings demonstrate that Sdox displays a more favorable drug-like ADME/toxicity profile than doxorubicin, different selectivity towards cancer targets, along with a greater preclinical efficacy in resistant tumors. Therefore, Sdox represents a prototype of innovative anthracyclines, worthy of further investigations in clinical settings

    E. coli Histidine Triad Nucleotide Binding Protein 1 (ecHinT) Is a Catalytic Regulator of D-Alanine Dehydrogenase (DadA) Activity In Vivo

    Get PDF
    Histidine triad nucleotide binding proteins (Hints) are highly conserved members of the histidine triad (HIT) protein superfamily. Hints comprise the most ancient branch of this superfamily and can be found in Archaea, Bacteria, and Eukaryota. Prokaryotic genomes, including a wide diversity of both Gram-negative and Gram-positive bacteria, typically have one Hint gene encoded by hinT (ycfF in E. coli). Despite their ubiquity, the foundational reason for the wide-spread conservation of Hints across all kingdoms of life remains a mystery. In this study, we used a combination of phenotypic screening and complementation analyses with wild-type and hinT knock-out Escherichia coli strains to show that catalytically active ecHinT is required in E. coli for growth on D-alanine as a sole carbon source. We demonstrate that the expression of catalytically active ecHinT is essential for the activity of the enzyme D-alanine dehydrogenase (DadA) (equivalent to D-amino acid oxidase in eukaryotes), a necessary component of the D-alanine catabolic pathway. Site-directed mutagenesis studies revealed that catalytically active C-terminal mutants of ecHinT are unable to activate DadA activity. In addition, we have designed and synthesized the first cell-permeable inhibitor of ecHinT and demonstrated that the wild-type E. coli treated with the inhibitor exhibited the same phenotype observed for the hinT knock-out strain. These results reveal that the catalytic activity and structure of ecHinT is essential for DadA function and therefore alanine metabolism in E. coli. Moreover, they provide the first biochemical evidence linking the catalytic activity of this ubiquitous protein to the biological function of Hints in Escherichia coli
    • …
    corecore