10 research outputs found

    Photoemission signature of momentum-dependent hybridization in CeCoIn5

    Get PDF
    Hybridization between f electrons and conduction bands (c-f hybridization) is a driving force for many unusual phenomena. To provide insight into it, systematic studies of CeCoIn 5 heavy fermion superconductor have been performed by angle-resolved photoemission spectroscopy (ARPES) in a large angular range at temperature of T = 6 K. The used photon energy of 122 eV corresponds to Ce 4d-4f resonance. Calculations carried out with the relativistic multiple scattering Korringa-Kohn-Rostoker method and one-step model of photoemission yielded realistic simulation of the ARPES spectra, indicating that Ce-In surface termination prevails. Surface states, which have been identified in the calculations, contribute significantly to the spectra. Effects of the hybridization strongly depend on wave vector. They include a dispersion of heavy electrons and bands gaining f-electron character when approaching Fermi energy. We have also observed a considerable variation of f-electron spectral weight at EF , which is normally determined by both matrix element effects and wave vector dependent c-f hybridization. Fermi surface scans covering a few Brillouin zones revealed large matrix element effects. A symmetrization of experimental Fermi surface, which reduces matrix element contribution, yielded a specific variation of 4f-electron enhanced spectral intensity at EF around Gamma barre and M barre points. Tight-binding approximation calculations for Ce-In plane provided the same universal distribution of 4f-electron density for a range of values of the parameters used in the model

    The Galaxies Beamline at SOLEIL Synchrotron: Inelastic X-ray Scattering and Photoelectron Spectroscopy in the Hard X-ray Range

    No full text
    International audienceThe GALAXIES beamline at the SOLEIL synchrotron is dedicated to inelastic x-ray scattering (IXS) and photoelectron spectroscopy (HAXPES) in the 2.3-12 keV hard x-ray range. These two techniques offer powerful, complementary methods of characterization of materials with bulk sensitivity, chemical and orbital selectivity, resonant enhancement and high resolving power. After a description of the beamline components and endstations, we address the beamline performances through a selection of recent works both in the solid and gas phases and using either IXS or HAXPES approaches. Prospects for studies on liquids are discussed

    Photoemission signature of momentum-dependent hybridization in CeCoIn5

    No full text
    Hybridization between f electrons and conduction bands (c-f hybridization) is a driving force for many unusual phenomena. To provide insight into it, systematic studies of CeCoIn 5 heavy fermion superconductor have been performed by angle-resolved photoemission spectroscopy (ARPES) in a large angular range at temperature of T = 6 K. The used photon energy of 122 eV corresponds to Ce 4d-4f resonance. Calculations carried out with the relativistic multiple scattering Korringa-Kohn-Rostoker method and one-step model of photoemission yielded realistic simulation of the ARPES spectra, indicating that Ce-In surface termination prevails. Surface states, which have been identified in the calculations, contribute significantly to the spectra. Effects of the hybridization strongly depend on wave vector. They include a dispersion of heavy electrons and bands gaining f-electron character when approaching Fermi energy. We have also observed a considerable variation of f-electron spectral weight at EF , which is normally determined by both matrix element effects and wave vector dependent c-f hybridization. Fermi surface scans covering a few Brillouin zones revealed large matrix element effects. A symmetrization of experimental Fermi surface, which reduces matrix element contribution, yielded a specific variation of 4f-electron enhanced spectral intensity at EF around Gamma barre and M barre points. Tight-binding approximation calculations for Ce-In plane provided the same universal distribution of 4f-electron density for a range of values of the parameters used in the model

    A universal modified van der Waals equation of state. Part I: Polymer and mineral glass formers

    No full text
    PVT data of glass formers (minerals and polymers) published in the literature are re-analyzed. All the polymer glass formers (PS, PVAc, PVME, PMMA, POMS, PBMA, PVC, PE, PP, PMPS, PMTS, PPG) present two main properties which have never been noted: a) the isobars P(V) have a fan structure characterized by the two parameters T* and V*; b) the isotherms verify the principle of temperature-pressure superposition for P < P *. From these properties we show that the Equation Of State (EOS) can be put on a modified van der Waals form (VW-EOS), (V − V *) = (V0 − V *)P */(P + P *) . The characteristic pressure P* and the covolume V* are T and P independent. In polymer glass formers P* and V* have same values in the α (melt) and ÎČ (glass) domains. The characteristic temperatures T * deduced from the Fan Structure of the Isobar (FSIb) above and below T g are different. The characteristic temperature T *(α) of the melt state is found near the Vogel temperature T 0 for linear polymers and more than 100 K below T 0 for atactic polymers (with pendent groups). This difference in atactic polymers (and in some low molecular weight compounds) is explained by the importance of the ÎČ motions due to the pendent groups. The independence of T 0 on P is discussed. A modified VFT equation (analogous to the compensation law and Meyer-Neldel rule) giving the relaxation time τ of the α motions as a function of P and T is proposed. The fan structure of the isotherm logτ versus P is explained. It is shown that organic non-polymeric liquids (C6H12, C6H14, DHIQ, OTP, Glycerol, Salol, PDE, DGEBA), mineral glass (SiO2, Se, GeSe4, GeSe2, GeO2, As2O3 and two metallic glasses (LaCe and CaAl alloys) verify this VW-EOS with similar accuracy. The relation P * = B 0/Îł B among the characteristic pressure P *, the zero-pressure modulus B 0 and the Slatter-GrĂŒneisen anharmonicity parameter Îł B deduced from the VW-EOS, is observed in all the glass formers

    Ubiquitous formation of bulk Dirac cones and topological surface states from a single orbital manifold in transition-metal dichalcogenides

    No full text
    Transition-metal dichalcogenides (TMDs) are renowned for their rich and varied bulk properties, while their single-layer variants have become one of the most prominent examples of two-dimensional materials beyond graphene. Their disparate ground states largely depend on transition metal d-electron-derived electronic states, on which the vast majority of attention has been concentrated to date. Here, we focus on the chalcogen-derived states. From density-functional theory calculations together with spin- and angle-resolved photoemission, we find that these generically host a co-existence of type-I and type-II three-dimensional bulk Dirac fermions as well as ladders of topological surface states and surface resonances. We demonstrate how these naturally arise within a single p-orbital manifold as a general consequence of a trigonal crystal field, and as such can be expected across a large number of compounds. Already, we demonstrate their existence in six separate TMDs, opening routes to tune, and ultimately exploit, their topological physics. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserve

    Long-term safety and efficacy of tezacaftor–ivacaftor in individuals with cystic fibrosis aged 12 years or older who are homozygous or heterozygous for Phe508del CFTR (EXTEND): an open-label extension study

    No full text
    Background Tezacaftor–ivacaftor is an approved cystic fibrosis transmembrane conductance regulator (CFTR) modulator shown to be efficacious and generally safe and well tolerated over 8–24 weeks in phase 3 clinical studies in participants aged 12 years or older with cystic fibrosis homozygous for the Phe508del CFTR mutation (F/F; study 661-106 [EVOLVE]) or heterozygous for the Phe508del CFTR mutation and a residual function mutation (F/RF; study 661-108 [EXPAND]). Longer-term (>24 weeks) safety and efficacy of tezacaftor–ivacaftor has not been assessed in clinical studies. Here, we present results of study 661-110 (EXTEND), a 96-week open-label extension study that assessed long-term safety, tolerability, and efficacy of tezacaftor–ivacaftor in participants aged 12 years or older with cystic fibrosis who were homozygous or heterozygous for the Phe508del CFTR mutation. Methods Study 661-110 was a 96-week, phase 3, multicentre, open-label study at 170 clinical research sites in Australia, Europe, Israel, and North America. Participants were aged 12 years or older, had cystic fibrosis, were homozygous or heterozygous for Phe508del CFTR, and completed one of six parent studies of tezacaftor–ivacaftor: studies 661-103, 661-106, 661-107, 661-108, 661-109, and 661-111. Participants received oral tezacaftor 100 mg once daily and oral ivacaftor 150 mg once every 12 h for up to 96 weeks. The primary endpoint was safety and tolerability. Secondary endpoints were changes in lung function, nutritional parameters, and respiratory symptom scores; pulmonary exacerbations; and pharmacokinetic parameters. A post-hoc analysis assessed the rate of lung function decline in F/F participants who received up to 120 weeks of tezacaftor–ivacaftor in studies 661-106 (F/F) and/or 661-110 compared with a matched cohort of CFTR modulator-untreated historical F/F controls from the Cystic Fibrosis Foundation Patient Registry. Primary safety analyses were done in all participants from all six parent studies who received at least one dose of study drug during this study. This study was registered at ClinicalTrials.gov (NCT02565914). Findings Between Aug 31, 2015, to May 31, 2019, 1044 participants were enrolled in study 661-110 from the six parent studies of whom 1042 participants received at least one dose of study drug and were included in the safety set. 995 (95%) participants had at least one TEAE; 22 (2%) had TEAEs leading to discontinuation; and 351 (34%) had serious TEAEs. No deaths occurred during the treatment-emergent period; after the treatment-emergent period, two deaths occurred, which were both deemed unrelated to study drug. F/F (106/110; n=459) and F/RF (108/110; n=226) participants beginning tezacaftor–ivacaftor in study 661-110 had improvements in efficacy endpoints consistent with parent studies; improvements in lung function and nutritional parameters and reductions in pulmonary exacerbations observed in the tezacaftor–ivacaftor groups in the parent studies were generally maintained in study 661-110 for an additional 96 weeks. Pharmacokinetic parameters were also similar to those in the parent studies. The annualised rate of lung function decline was 61·5% (95% CI 35·8 to 86·1) lower in tezacaftor–ivacaftor-treated F/F participants versus untreated matched historical controls. Interpretation Tezacaftor–ivacaftor was generally safe, well tolerated, and efficacious for up to 120 weeks, and the safety profile of tezacaftor–ivacaftor in study 661-110 was consistent with cystic fibrosis manifestations and with the safety profiles of the parent studies. The rate of lung function decline was significantly reduced in F/F participants, consistent with cystic fibrosis disease modification. Our results support the clinical benefit of long-term tezacaftor–ivacaftor treatment for people aged 12 years or older with cystic fibrosis with F/F or F/RF genotypes. Funding Vertex Pharmaceuticals Incorporated

    Glass-Forming Substances and Systems

    No full text
    corecore