381 research outputs found
Comparison of 30 THz impulsive burst time development to microwaves, H-alpha, EUV, and GOES soft X-rays
The recent discovery of impulsive solar burst emission in the 30 THz band is
raising new interpretation challenges. One event associated with a GOES M2
class flare has been observed simultaneously in microwaves, H-alpha, EUV, and
soft X-ray bands. Although these new observations confirm some features found
in the two prior known events, they exhibit time profile structure
discrepancies between 30 THz, microwaves, and hard X-rays (as inferred from the
Neupert effect). These results suggest a more complex relationship between 30
THz emission and radiation produced at other wavelength ranges. The multiple
frequency emissions in the impulsive phase are likely to be produced at a
common flaring site lower in the chromosphere. The 30 THz burst emission may be
either part of a nonthermal radiation mechanism or due to the rapid thermal
response to a beam of high-energy particles bombarding the dense solar
atmosphere.Comment: accepted to Astronomy and Astrophysic
Recommended from our members
A global atmospheric electricity monitoring network for climate and geophysical research
The Global atmospheric Electric Circuit (GEC) is a fundamental coupling network of the climate system connecting electrically disturbed weather regions with fair weather regions across the planet. The GEC sustains the fair weather electric field (or potential gradient, PG) which is present globally and can be measured routinely at the surface using durable instrumentation such as modern electric field mills, which are now widely deployed internationally. In contrast to lightning or magnetic fields, fair weather PG cannot be measured remotely. Despite the existence of many PG datasets (both contemporary and historical), few attempts have been made to coordinate and integrate these fragmented surface measurements within a global framework. Such a synthesis is important elvinin order to fully study major influences on the GEC such as climate variations and space weather effects, as well as more local atmospheric electrical processes such as cloud electrification, lightning initiation, and dust and aerosol charging.
The GloCAEM (Global Coordination of Atmospheric Electricity Measurements) project has brought together experts in atmospheric electricity to make the first steps towards an effective global network for atmospheric electricity monitoring, which will provide data in near real time. Data from all sites are available in identically-formatted files, at both one second and one minute temporal resolution, along with meteorological data (wherever available) for ease of interpretation of electrical measurements. This work describes the details of the GloCAEM database and presents what is likely to be the largest single analysis of PG data performed from multiple datasets at geographically distinct locations. Analysis of the diurnal variation in PG from all 17 GloCAEM sites demonstrates that the majority of sites show two daily maxima, characteristic of local influences on the PG, such as the sunrise effect. Data analysis methods to minimise such effects are presented and recommendations provided on the most suitable GloCAEM sites for the study of various scientific phenomena. The use of the dataset for a further understanding of the GEC is also demonstrated, in particular for more detailed characterization of day-to-day global circuit variability. Such coordinated effort enables deeper insight into PG phenomenology which goes beyond single-location PG measurements, providing a simple measurement of global thunderstorm variability on a day-to-day timescale. The creation of the GloCAEM database is likely to enable much more effective study of atmospheric electricity variables than has ever been possible before, which will improve our understanding of the role of atmospheric electricity in the complex processes underlying weather and climate
Noise storm continua: power estimates for electron acceleration
We use a generic stochastic acceleration formalism to examine the power
() input to nonthermal electrons that cause
noise storm continuum emission. The analytical approach includes the derivation
of the Green's function for a general second-order Fermi process, and its
application to obtain the particular solution for the nonthermal electron
distribution resulting from the acceleration of a Maxwellian source in the
corona. We compare with the power observed in noise
storm radiation. Using typical values for the various parameters, we find that
, yielding an efficiency
estimate in the range 10^{-10} \lsim \eta
\lsim 10^{-6} for this nonthermal acceleration/radiation process. These
results reflect the efficiency of the overall process, starting from electron
acceleration and culminating in the observed noise storm emission.Comment: Accepted for publication in Solar Physic
The Composition of Titan's Lower Atmosphere and Simple Surface Volatiles as Measured by the Cassini-Huygens Probe Gas Chromatograph Mass Spectrometer Experiment
The Cassini-Huygens Probe Gas Chromatograph Mass Spectrometer (GCMS) determined the composition of the Titan atmosphere from ~140km altitude to the surface. After landing, it returned composition data of gases evaporated from the surface. Height profiles of molecular nitrogen (N2), methane (CH4) and molecular hydrogen (H2) were determined. Traces were detected on the surface of evaporating methane, ethane (C2H6), acetylene (C2H2), cyanogen (C2N2) and carbon dioxide (CO2). The methane data showed evidence that methane precipitation occurred recently. The methane mole fraction was (1.48+/-0.09) x 10(exp -2) in the lower stratosphere (139.8 km to 75.5 km) and (5.65+/-0.18) x 10(exp -2) near the surface (6.7 km to the surface). The molecular hydrogen mole fraction was (1.01+/-0.16) x 10(exp -3) in the atmosphere and (9.90+/-0.17) x 10(exp -4) on the surface. Isotope ratios were 167.7+/-0.6 for N-14/N-15 in molecular nitrogen, 91.1+/-1.4 for C-12/C-13 in methane and (1.35+/-0.30) x 10(exp -4) for D/H in molecular hydrogen. The mole fractions of Ar-36 and radiogenic Ar-40 are (2.1+/-0.8) x 10(exp -7) and (3.39 +/-0.12) x 10(exp -5) respectively. Ne-22 has been tentatively identified at a mole fraction of (2.8+/-2.1) x 10(exp -7) Krypton and xenon were below the detection threshold of 1 x 10(exp -8) mole fraction. Science data were not retrieved from the gas chromatograph subsystem as the abundance of the organic trace gases in the atmosphere and on the ground did not reach the detection threshold. Results previously published from the GCMS experiment are superseded by this publication
The Submillimeter Active Region Excess Brightness Temperature during Solar Cycles 23 and 24
We report the temporal evolution of the excess brightness temperature above
solar active regions (ARs) observed with the Solar Submillimeter Telescope
(SST) at 212 ({\lambda} = 1.4 mm) and 405 GHz ({\lambda} = 0.7 mm) during
Cycles 23 and 24. Comparison with the sunspot number (SSN) yields a Pearson's
correlation coefficient R = 0.88 and 0.74 for 212 and 405 GHz, respectively.
Moreover, when only Cycle 24 is taken into account the correlation coefficients
go to 0.93 and 0.81 for each frequency. We derive the spectral index {\alpha}
between SST frequencies and found a slight anti-correlation with the SSN (R =
-0.25); however, since the amplitude of the variation is lower than the
standard deviation we cannot draw a definite conclusion. Indeed, {\alpha}
remains almost constant within the uncertainties with a median value
approximate to 0 characteristic of an optically thick thermal source. Since the
origin of the AR submillimeter radiation is thermal continuum produced at
chromospheric heights, the strong correlation between the excess brightness
temperature and the magnetic cycle evolution could be related to the available
free magnetic energy to be released in reconnection events.Comment: Accepted for publication in the Astrophysical Journa
Quantum random walks with history dependence
We introduce a multi-coin discrete quantum random walk where the amplitude
for a coin flip depends upon previous tosses. Although the corresponding
classical random walk is unbiased, a bias can be introduced into the quantum
walk by varying the history dependence. By mixing the biased random walk with
an unbiased one, the direction of the bias can be reversed leading to a new
quantum version of Parrondo's paradox.Comment: 8 pages, 6 figures, RevTe
Survey on solar X-ray flares and associated coherent radio emissions
The radio emission during 201 X-ray selected solar flares was surveyed from
100 MHz to 4 GHz with the Phoenix-2 spectrometer of ETH Zurich. The selection
includes all RHESSI flares larger than C5.0 jointly observed from launch until
June 30, 2003. Detailed association rates of radio emission during X-ray flares
are reported. In the decimeter wavelength range, type III bursts and the
genuinely decimetric emissions (pulsations, continua, and narrowband spikes)
were found equally frequently. Both occur predominantly in the peak phase of
hard X-ray (HXR) emission, but are less in tune with HXRs than the
high-frequency continuum exceeding 4 GHz, attributed to gyrosynchrotron
radiation. In 10% of the HXR flares, an intense radiation of the above genuine
decimetric types followed in the decay phase or later. Classic meter-wave type
III bursts are associated in 33% of all HXR flares, but only in 4% they are the
exclusive radio emission. Noise storms were the only radio emission in 5% of
the HXR flares, some of them with extended duration. Despite the spatial
association (same active region), the noise storm variations are found to be
only loosely correlated in time with the X-ray flux. In a surprising 17% of the
HXR flares, no coherent radio emission was found in the extremely broad band
surveyed. The association but loose correlation between HXR and coherent radio
emission is interpreted by multiple reconnection sites connected by common
field lines.Comment: Solar Physics, in pres
Spectrum of Solar Type I Continuum Noise Storm in the 50 - 80 MHz band, and Plasma characteristics in the associated source region
Continuum observations of a solar noise storm in the frequency range of 50 -
80 MHz observed with the Gauribidanur radio spectrograph during 2000 September,
26 & 27, are presented here. The radio spectral index of the noise storm
continuum in the band 50 - 80 MHz is found to be ~3.65 during the above period.
The Noise Storm continuum radiation is explained as a consequence of the
non-thermal, plasma emission mechanism. The beam-density of suprathermal
electrons is estimated for the coronal plasma near the source region of storm
radiation. Supplementary evidence for the density-estimate is provided by way
of analysing the imaging data from the SXT on-board the Yohkoh spacecraft, and
the LASCO, MDI, and EIT on board the SoHO spacecraft.Comment: 43 pages; 5 tables; 15 figures (9 color). ApJ (Part I : accepted
LLAMA Millimeter and Submillimeter Observatory. Update on its Science Opportunities
The Large Latin American Millimeter Array (LLAMA for short) is a joint
scientific and technological undertaking of Argentina and Brazil whose goal is
to install and to operate an observing facility capable of performing
observations of the Universe at millimeter and sub-millimeter wavelengths. It
will consist of a 12m ALMA-like antenna with the addition of two Nasmyth
cabins. LLAMA is located at 4850m above sea level in the Puna Saltenia, in the
northwest region of Argentina. When completed, LLAMA will be equipped with six
ALMA receivers covering Bands 1, 2+3, 5, 6, 7, and 9, which will populate the
two Nasmyth cabins. We summarize here the main ideas related with the Science
that LLAMA could accomplish on different astronomical topics, gathered from the
experience of a group of international experts on each field.Comment: 11 pages, contributed paper to the workshop "Prospects for
low-frequency radio astronomy in South America", held in Buenos Aires, Nov
2022; to appear in the RevMexAA-S
The abundances of constituents of Titan's atmosphere from the GCMS instrument on the Huygens probe
Saturn's largest moon, Titan, remains an enigma, explored only by remote sensing from Earth, and by the Voyager and Cassini spacecraft. The most puzzling aspects include the origin of the molecular nitrogen and methane in its atmosphere, and the mechanism(s) by which methane is maintained in the face of rapid destruction by photolysis. The Huygens probe, launched from the Cassini spacecraft, has made the first direct observations of the satellite's surface and lower atmosphere. Here we report direct atmospheric measurements from the Gas Chromatograph Mass Spectrometer (GCMS), including altitude profiles of the constituents, isotopic ratios and trace species ( including organic compounds). The primary constituents were confirmed to be nitrogen and methane. Noble gases other than argon were not detected. The argon includes primordial Ar-36, and the radiogenic isotope Ar-40, providing an important constraint on the outgassing history of Titan. Trace organic species, including cyanogen and ethane, were found in surface measurements.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62703/1/nature04122.pd
- âŠ