45 research outputs found

    Changes in soil microbial community structure influenced by agricultural management practices in a mediterranean agro-ecosystem.

    Get PDF
    Agricultural practices have proven to be unsuitable in many cases, causing considerable reductions in soil quality. Land management practices can provide solutions to this problem and contribute to get a sustainable agriculture model. The main objective of this work was to assess the effect of different agricultural management practices on soil microbial community structure (evaluated as abundance of phospholipid fatty acids, PLFA). Five different treatments were selected, based on the most common practices used by farmers in the study area (eastern Spain): residual herbicides, tillage, tillage with oats and oats straw mulching; these agricultural practices were evaluated against an abandoned land after farming and an adjacent long term wild forest coverage. The results showed a substantial level of differentiation in the microbial community structure, in terms of management practices, which was highly associated with soil organic matter content. Addition of oats straw led to a microbial community structure closer to wild forest coverage soil, associated with increases in organic carbon, microbial biomass and fungal abundances. The microbial community composition of the abandoned agricultural soil was characterised by increases in both fungal abundances and the metabolic quotient (soil respiration per unit of microbial biomass), suggesting an increase in the stability of organic carbon. The ratio of bacteria:fungi was higher in wild forest coverage and land abandoned systems, as well as in the soil treated with oat straw. The most intensively managed soils showed higher abundances of bacteria and actinobacteria. Thus, the application of organic matter, such as oats straw, appears to be a sustainable management practice that enhances organic carbon, microbial biomass and activity and fungal abundances, thereby changing the microbial community structure to one more similar to those observed in soils under wild forest coverage

    AATR an ionospheric activity indicator specifically based on GNSS measurements

    Get PDF
    This work reviews an ionospheric activity indicator useful for identifying disturbed periods affecting the performance of Global Navigation Satellite System (GNSS). This index is based in the Along Arc TEC Rate (AATR) and can be easily computed from dual-frequency GNSS measurements. The AATR indicator has been assessed over more than one Solar Cycle (2002–2017) involving about 140 receivers distributed world-wide. Results show that it is well correlated with the ionospheric activity and, unlike other global indicators linked to the geomagnetic activity (i.e. DST or Ap), it is sensitive to the regional behaviour of the ionosphere and identifies specific effects on GNSS users. Moreover, from a devoted analysis of different Satellite Based Augmentation System (SBAS) performances in different ionospheric conditions, it follows that the AATR indicator is a very suitable mean to reveal whether SBAS service availability anomalies are linked to the ionosphere. On this account, the AATR indicator has been selected as the metric to characterise the ionosphere operational conditions in the frame of the European Space Agency activities on the European Geostationary Navigation Overlay System (EGNOS). The AATR index has been adopted as a standard tool by the International Civil Aviation Organization (ICAO) for joint ionospheric studies in SBAS. In this work we explain how the AATR is computed, paying special attention to the cycle-slip detection, which is one of the key issues in the AATR computation, not fully addressed in other indicators such as the Rate Of change of the TEC Index (ROTI). After this explanation we present some of the main conclusions about the ionospheric activity that can extracted from the AATR values during the above mentioned long-term study. These conclusions are: (a) the different spatial correlation related with the MOdified DIP (MODIP) which allows to clearly separate high, mid and low latitude regions, (b) the large spatial correlation in mid latitude regions which allows to define a planetary index, similar to the geomagnetic ones, (c) the seasonal dependency which is related with the longitude and (d) the variation of the AATR value at different time scales (hourly, daily, seasonal, among others) which confirms most of the well-known time dependences of the ionospheric events, and finally, (e) the relationship with the space weather events.Postprint (published version

    Feasibility of precise navigation in high and low latitude regions under scintillation conditions

    Get PDF
    Scintillation is one of the most challenging problems in Global Navigation Satellite Systems (GNSS) navigation. This phenomenon appears when the radio signal passes through ionospheric irregularities. These irregularities represent rapid changes on the refraction index and, depending on their size, they can produce also diffractive effects affecting the signal amplitude and, eventually producing cycle slips. In this work, we show that the scintillation effects on the GNSS signal are quite different in low and high latitudes. For low latitude receivers, the main effects, from the point of view of precise navigation, are the increase of the carrier phase noise (measured by sÂż) and the fade on the signal intensity (measured by S4) that can produce cycle slips in the GNSS signal. With several examples, we show that the detection of these cycle slips is the most challenging problem for precise navigation, in such a way that, if these cycle slips are detected, precise navigation can be achieved in these regions under scintillation conditions. For high-latitude receivers the situation differs. In this region the size of the irregularities is typically larger than the Fresnel length, so the main effects are related with the fast change on the refractive index associated to the fast movement of the irregularities (which can reach velocities up to several km/s). Consequently, the main effect on the GNSS signals is a fast fluctuation of the carrier phase (large sÂż), but with a moderate fade in the amplitude (moderate S4). Therefore, as shown through several examples, fluctuations at high-latitude usually do not produce cycle slips, being the effect quite limited on the ionosphere-free combination and, in general, precise navigation can be achieved also during strong scintillation conditions.Postprint (published version

    Assessing the quality of ionospheric models through GNSS positioning error: methodology and results

    Get PDF
    Single-frequency users of the global navigation satellite system (GNSS) must correct for the ionospheric delay. These corrections are available from global ionospheric models (GIMs). Therefore, the accuracy of the GIM is important because the unmodeled or incorrectly part of ionospheric delay contributes to the positioning error of GNSS-based positioning. However, the positioning error of receivers located at known coordinates can be used to infer the accuracy of GIMs in a simple manner. This is why assessment of GIMs by means of the position domain is often used as an alternative to assessments in the ionospheric delay domain. The latter method requires accurate reference ionospheric values obtained from a network solution and complex geodetic modeling. However, evaluations using the positioning error method present several difficulties, as evidenced in recent works, that can lead to inconsistent results compared to the tests using the ionospheric delay domain. We analyze the reasons why such inconsistencies occur, applying both methodologies. We have computed the position of 34 permanent stations for the entire year of 2014 within the last Solar Maximum. The positioning tests have been done using code pseudoranges and carrier-phase leveled (CCL) measurements. We identify the error sources that make it difficult to distinguish the part of the positioning error that is attributable to the ionospheric correction: the measurement noise, pseudorange multipath, evaluation metric, and outliers. Once these error sources are considered, we obtain equivalent results to those found in the ionospheric delay domain assessments. Accurate GIMs can provide single-frequency navigation positioning at the decimeter level using CCL measurements and better positions than those obtained using the dual-frequency ionospheric-free combination of pseudoranges. Finally, some recommendations are provided for further studies of ionospheric models using the position domain method.Peer ReviewedPostprint (published version

    Ionospheric corrections tailored to the Galileo High Accuracy Service

    Get PDF
    The Galileo High Accuracy Service (HAS) is a new capability of the European Global Navigation Satellite System that is currently under development. The Galileo HAS will start providing satellite orbit and clock corrections (i.e. non-dispersive effects) and soon it will also correct dispersive effects such as inter-frequency biases and, in its full capability, ionospheric delay. We analyse here an ionospheric correction system based on the fast precise point positioning (Fast-PPP) and its potential application to the Galileo HAS. The aim of this contribution is to present some recent upgrades to the Fast-PPP model, with the emphasis on the model geometry and the data used. The results show the benefits of integer ambiguity resolution to obtain unambiguous carrier phase measurements as input to compute the Fast-PPP model. Seven permanent stations are used to assess the errors of the Fast-PPP ionospheric corrections, with baseline distances ranging from 100 to 1000 km from the reference receivers used to compute the Fast-PPP corrections. The 99% of the GPS and Galileo errors in well-sounded areas and in mid-latitude stations are below one total electron content unit. In addition, large errors are bounded by the error prediction of the Fast-PPP model, in the form of the variance of the estimation of the ionospheric corrections. Therefore, we conclude that Fast-PPP is able to provide ionospheric corrections with the required ionospheric accuracy, and realistic confidence bounds, for the Galileo HAS.Open Access funding provided thanks to the CRUECSIC agreement with Springer Nature. The present work was supported in part by the European Space Agency contract IONO4HAS 4000128823/19/NL/AS, by the project RTI2018-094295-B-I00 funded by the MCIN/AEI 10.13039/501100011033 which is co-founded by the FEDER programme and by the Horizon 2020 Marie Skłodowska-Curie Individual Global Fellowship 797461 NAVSCIN.Peer ReviewedPostprint (published version

    Ionospheric scintillation models: An inter-comparison study using GNSS data

    Get PDF
    Existing climatological ionosphere models, for example, GISM, SCIONAV, WBMOD, and STIPEE, have known limitations that prevent their wide use. In the framework of ESA study “Radio Climatology Models of the Ionosphere: Status and Way Forward” their performance was assessed using experimental observations of ionospheric scintillation collected over the past years to evaluate their ability to properly support future missions, and eventually indicate their weaknesses for future improvements. Model limitations are more important in terms of the intensity scintillation parameter (S4). To improve them, the COSMIC model has been fit (scaling factor and offset) to the measured data, and it became the one better predicting the intensity scintillation in a statistical sense.This research was funded by the project “Radio Climatology Models of the Ionosphere: Status and Way Forward,” ESA/ESTEC, grant number 4000120868/17/NL/AF [https://nebula.esa.int/content/radio-climatology-models-ionosphere-status-and-way-forward]. Article processing charges were funded by the project “GENESIS: GNSS Environmental and Societal Missions – Subproject UPC,” AEI Grant PID2021-126436OB-C21.Peer ReviewedPostprint (published version

    Improved characterization and modeling of equatorial plasma depletions

    Get PDF
    This manuscript presents a method to identify the occurrence of Equatorial Plasma Bubbles (EPBs) with data gathered from receivers of Global Navigation Satellite System (GNSS). This method adapts a previously existing technique to detect Medium Scale Travelling Ionospheric Disturbances (MSTIDs), which focus on the 2nd time derivatives of total electron content estimated from GNSS signals (2DTEC). Results from this tool made possible to develop a comprehensive analysis of the characteristics of EPBs. Analyses of the probability of occurrence, effective time duration, depth of the depletion and total disturbance of the EPBs show their dependence on local time and season of the year at global scale within the latitude belt from 35°N to 35°S for the descending phase of solar cycle 23 and ascending phase of solar cycle 24, 2002–2014. These results made possible to build an EPBs model, bounded with the Solar Flux index, that simulates the probability of the number of EPBs and their characteristics expected for a representative day at given season and local time (LT). The model results provided insight into different important aspects: the maximum occurrence of bubbles take place near the equatorial anomaly crests, asymmetry between hemispheres and preferred longitudes with enhanced EPBs activity. Model output comparisons with independent observations confirmed its soundness.Postprint (published version

    Moving beyond agriculture and aquaculture to integrated sustainable food systems as part of a circular bioeconomy

    Get PDF
    The objective of this perspective paper is to present and discuss how systemic innovations can deliver a step change in the way food is produced in Europe. The production of healthy, safe and affordable food can contribute toward a just transition to net zero carbon (C) for Europe. A systemic and cross sectorial approach can contribute to climate mitigation by transfer of atmospheric CO2 to the terrestrial biosphere using low trophic species (LTS), including plants, seaweed and mussels (i.e. C sequestration) and increasing organic C stocks in soils and vegetation biomass (i.e. C storage). Innovative combinations of technologies applied to LTS, processed animal protein, new crops, and diversified and integrated production systems can link the high primary productivity rates of the marine environment to the C storage capability of the terrestrial food sector. Furthermore, the important roles of both private and public sector actors and better use of systemic approaches to further elucidate the multi-dimensional and multi-level interplays in complex food systems needs consideration. This can pave the way for linking and scaling up C-neutral marine and terrestrial food production systems into a future sustainable and circular bioeconomy. This systems-based approach can address some of the challenges associated with the current farming systems, as interdisciplinary research on aquaculture innovation can support the development of a resilient and sustainable food system. Examples of technologies provided include: a custom configured and digital user-oriented co-creation approach for Responsible Research and Innovation (RRI), a WebGIS tool on soil C storage, innovative composting methods, advanced breeding methods, new machinery for low greenhouse gas diversified orchard farming, AI model systems to improve decision support systems in management of soil, vertical farming, and animal feeding

    Changes in soil microbial community structure influenced by agricultural management practices in a mediterranean agro-ecosystem.

    Get PDF
    Agricultural practices have proven to be unsuitable in many cases, causing considerable reductions in soil quality. Land management practices can provide solutions to this problem and contribute to get a sustainable agriculture model. The main objective of this work was to assess the effect of different agricultural management practices on soil microbial community structure (evaluated as abundance of phospholipid fatty acids, PLFA). Five different treatments were selected, based on the most common practices used by farmers in the study area (eastern Spain): residual herbicides, tillage, tillage with oats and oats straw mulching; these agricultural practices were evaluated against an abandoned land after farming and an adjacent long term wild forest coverage. The results showed a substantial level of differentiation in the microbial community structure, in terms of management practices, which was highly associated with soil organic matter content. Addition of oats straw led to a microbial community structure closer to wild forest coverage soil, associated with increases in organic carbon, microbial biomass and fungal abundances. The microbial community composition of the abandoned agricultural soil was characterised by increases in both fungal abundances and the metabolic quotient (soil respiration per unit of microbial biomass), suggesting an increase in the stability of organic carbon. The ratio of bacteria:fungi was higher in wild forest coverage and land abandoned systems, as well as in the soil treated with oat straw. The most intensively managed soils showed higher abundances of bacteria and actinobacteria. Thus, the application of organic matter, such as oats straw, appears to be a sustainable management practice that enhances organic carbon, microbial biomass and activity and fungal abundances, thereby changing the microbial community structure to one more similar to those observed in soils under wild forest coverage
    corecore