385 research outputs found

    Rapid, Precise, and High-Sensitivity Acquisition of Paleomagnetic and Rock-Magnetic Data: Development of a Low-Noise Automatic Sample Changing System for Superconducting Rock Magnetometers

    Get PDF
    Among Earth sciences, paleomagnetism is particularly linked to the statistics of large sample sets as a matter of historical development and logistical necessity. Because the geomagnetic field varies over timescales relevant to sedimentary deposition and igneous intrusion, while the fidelity of recorded magnetization is modulated by original properties of rock units and by alteration histories, "ideal" paleomagnetic results measure remanent magnetizations of hundreds of samples at dozens of progressive demagnetization levels, accompanied by tests of magnetic composition on representative sister specimens. We present an inexpensive, open source system for automating paleomagnetic and rock magnetic measurements. Using vacuum pick-and-place technology and a quartz-glass sample holder, the system can in one hour measure remanent magnetizations, as weak as a few pAm2, of ~30 specimens in two vertical orientations with measurement errors comparable to those of the best manual systems. The system reduces the number of manual manipulations required per specimen ~8 fold

    A dynamic Archean sulfur cycle

    Get PDF
    Many aspects of the Earth’s early sulfur cycle, from the origin of mass anomalous fractionations to the scale and degree of biological involvement, remain poorly understood. We have been studying the nature of multiple sulfur isotope (^(32)S, ^(33)S, and ^(34)S) signals using a novel combination of scanning high-resolution low-temperature superconductivity SQUID microscopy and secondary ion mass spectrometry (SIMS) techniques in a suite of samples from distal slope and basinal environments adjacent to a major Late Archean-age (~2.6-2.52 Ga) carbonate platform. Coupled with petrography, these techniques allow us to interrogate, at the same microscopic scale, the complex history of mineralization in samples containing diverse sulfide-bearing mineral components. Because of a general lack of Archean sulfate minerals, we focused our analyses on early diagenetic pyrite nodules, precipitated in surface sediments. This allows us to assay fractionations by controlling for isotope mass balance

    Geology and geochronology of the Tana Basin, Ethiopia: LIP volcanism, super eruptions and Eocene–Oligocene environmental change

    Get PDF
    New geological and geochronological data define four episodes of volcanism for the Lake Tana region in the northern Ethiopian portion of the Afro–Arabian Large Igneous Province (LIP): pre-31 Ma flood basalt that yielded a single 40Ar/39Ar age of 34.05±0.54/0.56 Ma; thick and extensive felsic ignimbrites and rhyolites (minimum volume of 2–3×103 km3) erupted between 31.108±0.020/0.041 Ma and 30.844±0.027/0.046 Ma (U–Pb CA-ID-TIMS zircon ages); mafic volcanism bracketed by 40Ar/39Ar ages of 28.90±0.12/0.14 Ma and 23.75±0.02/0.04 Ma; and localised scoraceous basalt with an 40Ar/39Ar age of 0.033±0.005/0.005 Ma. The felsic volcanism was the product of super eruptions that created a 60–80 km diameter caldera marked by km-scale caldera-collapse fault blocks and a steep-sided basin filled with a minimum of 180 m of sediment and the present-day Lake Tana. These new data enable mapping, with a finer resolution than previously possible, Afro–Arabian LIP volcanism onto the timeline of the Eocene–Oligocene transition and show that neither the mafic nor silicic volcanism coincides directly with perturbations in the geochemical records that span that transition. Our results reinforce the view that it is not the development of a LIP alone but its rate of effusion that contributes to inducing global-scale environmental change

    A single atom detector integrated on an atom chip: fabrication, characterization and application

    Full text link
    We describe a robust and reliable fluorescence detector for single atoms that is fully integrated into an atom chip. The detector allows spectrally and spatially selective detection of atoms, reaching a single atom detection efficiency of 66%. It consists of a tapered lensed single-mode fiber for precise delivery of excitation light and a multi-mode fiber to collect the fluorescence. The fibers are mounted in lithographically defined holding structures on the atom chip. Neutral 87Rb atoms propagating freely in a magnetic guide are detected and the noise of their fluorescence emission is analyzed. The variance of the photon distribution allows to determine the number of detected photons / atom and from there the atom detection efficiency. The second order intensity correlation function of the fluorescence shows near-perfect photon anti-bunching and signs of damped Rabi-oscillations. With simple improvements one can boost the detection efficiency to > 95%.Comment: 24 pages, 11 figure

    Tomographic mapping of the hidden dimension in quasi-particle interference

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2021-03-05, registration 2021-11-04, accepted 2021-11-04, pub-electronic 2021-11-18, online 2021-11-18, collection 2021-12Publication status: PublishedFunder: RCUK | Engineering and Physical Sciences Research Council (EPSRC); doi: https://doi.org/10.13039/501100000266; Grant(s): EP/L015110/1, EP/R031924/1Funder: EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020); doi: https://doi.org/10.13039/100010661; Grant(s): 730872, ERC-714193-QUESTDO, 730872Abstract: Quasiparticle interference (QPI) imaging is well established to study the low-energy electronic structure in strongly correlated electron materials with unrivalled energy resolution. Yet, being a surface-sensitive technique, the interpretation of QPI only works well for anisotropic materials, where the dispersion in the direction perpendicular to the surface can be neglected and the quasiparticle interference is dominated by a quasi-2D electronic structure. Here, we explore QPI imaging of galena, a material with an electronic structure that does not exhibit pronounced anisotropy. We find that the quasiparticle interference signal is dominated by scattering vectors which are parallel to the surface plane however originate from bias-dependent cuts of the 3D electronic structure. We develop a formalism for the theoretical description of the QPI signal and demonstrate how this quasiparticle tomography can be used to obtain information about the 3D electronic structure and orbital character of the bands

    Cooperation, Norms, and Revolutions: A Unified Game-Theoretical Approach

    Get PDF
    Cooperation is of utmost importance to society as a whole, but is often challenged by individual self-interests. While game theory has studied this problem extensively, there is little work on interactions within and across groups with different preferences or beliefs. Yet, people from different social or cultural backgrounds often meet and interact. This can yield conflict, since behavior that is considered cooperative by one population might be perceived as non-cooperative from the viewpoint of another. To understand the dynamics and outcome of the competitive interactions within and between groups, we study game-dynamical replicator equations for multiple populations with incompatible interests and different power (be this due to different population sizes, material resources, social capital, or other factors). These equations allow us to address various important questions: For example, can cooperation in the prisoner's dilemma be promoted, when two interacting groups have different preferences? Under what conditions can costly punishment, or other mechanisms, foster the evolution of norms? When does cooperation fail, leading to antagonistic behavior, conflict, or even revolutions? And what incentives are needed to reach peaceful agreements between groups with conflicting interests? Our detailed quantitative analysis reveals a large variety of interesting results, which are relevant for society, law and economics, and have implications for the evolution of language and culture as well

    SQUID–SIMS is a useful approach to uncover primary signals in the Archean sulfur cycle

    Get PDF
    Many aspects of Earth’s early sulfur cycle, from the origin of mass-anomalous fractionations to the degree of biological participation, remain poorly understood—in part due to complications from postdepositional diagenetic and metamorphic processes. Using a combination of scanning high-resolution magnetic superconducting quantum interference device (SQUID) microscopy and secondary ion mass spectrometry (SIMS) of sulfur isotopes (^(32)S, ^(33)S, and ^(34)S), we examined drill core samples from slope and basinal environments adjacent to a major Late Archean (∼2.6–2.5 Ga) marine carbonate platform from South Africa. Coupled with petrography, these techniques can untangle the complex history of mineralization in samples containing diverse sulfur-bearing phases. We focused on pyrite nodules, precipitated in shallow sediments. These textures record systematic spatial differences in both mass-dependent and mass-anomalous sulfur-isotopic composition over length scales of even a few hundred microns. Petrography and magnetic imaging demonstrate that mass-anomalous fractionations were acquired before burial and compaction, but also show evidence of postdepositional alteration 500 million y after deposition. Using magnetic imaging to screen for primary phases, we observed large spatial gradients in Δ^(33)S (>4‰) in nodules, pointing to substantial environmental heterogeneity and dynamic mixing of sulfur pools on geologically rapid timescales. In other nodules, large systematic radial δ^(34)S gradients (>20‰) were observed, from low values near their centers increasing to high values near their rims. These fractionations support hypotheses that microbial sulfate reduction was an important metabolism in organic-rich Archean environments—even in an Archean ocean basin dominated by iron chemistry
    • …
    corecore