96 research outputs found

    Proteomics: in pursuit of effective traumatic brain injury therapeutics

    Get PDF
    Effective traumatic brain injury (TBI) therapeutics remain stubbornly elusive. Efforts in the field have been challenged by the heterogeneity of clinical TBI, with greater complexity among underlying molecular phenotypes than initially conceived. Future research must confront the multitude of factors comprising this heterogeneity, representing a big data challenge befitting the coming informatics age. Proteomics is poised to serve a central role in prescriptive therapeutic development, as it offers an efficient endpoint within which to assess post-TBI biochemistry. We examine rationale for multifactor TBI proteomic studies and the particular importance of temporal profiling in defining biochemical sequences and guiding therapeutic development. Lastly, we offer perspective on repurposing biofluid proteomics to develop theragnostic assays with which to prescribe, monitor and assess pharmaceutics for improved translation and outcome for TBI patients

    Phonon-driven spin-Floquet magneto-valleytronics in MoS2

    Get PDF
    Two-dimensional materials equipped with strong spin-orbit coupling can display novel electronic, spintronic, and topological properties originating from the breaking of time or inversion symmetry. A lot of interest has focused on the valley degrees of freedom that can be used to encode binary information. By performing ab initio time-dependent density functional simulation on MoS2, here we show that the spin is not only locked to the valley momenta but strongly coupled to the optical E '' phonon that lifts the lattice mirror symmetry. Once the phonon is pumped so as to break time-reversal symmetry, the resulting Floquet spectra of the phonon-dressed spins carry a net out-of-plane magnetization (approximate to 0.024 mu(B) for single-phonon quantum) even though the original system is non-magnetic. This dichroic magnetic response of the valley states is general for all 2H semiconducting transition-metal dichalcogenides and can be probed and controlled by infrared coherent laser excitation

    Investigating the Associations among Overtime Work, Health Behaviors, and Health: A Longitudinal Study among Full-time Employees

    Get PDF
    # The Author(s) 2010. This article is published with open access at Springerlink.com Background It has often been suggested that high levels of overtime lead to adverse health outcomes. One mechanism that may account for this association is that working overtime leads to elevated levels of stress, which could affect worker’s behavioral decisions or habits (such as smoking and lack of physical activity). In turn, this could lead to adverse health. Purpose The present study examined this reasoning in a prospective longitudinal design. Data from the prospective 2-year Study on Health at Work (N=649) were used to test our hypotheses. Methods Structural equation analysis was used to examine the relationships among overtime, beneficial (exercising, intake of fruit and vegetables) and risky (smoking and drinking) health behaviors, and health indicators (BMI and subjective health). Results Working overtime was longitudinally related with adverse subjective health, but not with body mass

    Methamphetamine Increases LPS-Mediated Expression of IL-8, TNF-α and IL-1β in Human Macrophages through Common Signaling Pathways

    Get PDF
    The use of methamphetamine (MA) has increased in recent years, and is a major health concern throughout the world. The use of MA has been associated with an increased risk of acquiring HIV-1, along with an increased probability of the acquisition of various sexually transmitted infections. In order to determine the potential effects of MA exposure in the context of an infectious agent, U937 macrophages were exposed to various combinations of MA and bacterial lipopolysaccharide (LPS). Treatment with MA alone caused significant increases in the levels of TNF-α, while treatment with both MA and LPS resulted in significant increases in TNF-α, IL-1β and the chemokine IL-8. The increases in cytokine or chemokine levels seen when cells were treated with both LPS and MA were generally greater than those increases observed when cells were treated with only LPS. Treatment with chemical inhibitors demonstrated that the signal transduction pathways including NF-kB, MAPK, and PI3-Akt were involved in mediating the increased inflammatory response. As discussed in the paper, these pathways appear to be utilized by both MA and LPS, in the induction of these inflammatory mediators. Since these pathways are involved in the induction of inflammation in response to other pathogens, this suggests that MA-exacerbated inflammation may be a common feature of infectious disease in MA abusers

    A Deep Insight into the Sialome of Rhodnius neglectus, a vector of chagas disease

    Get PDF
    Background Triatomines are hematophagous insects that act as vectors of Chagas disease. Rhodnius neglectus is one of these kissing bugs found, contributing to the transmission of this American trypanosomiasis. The saliva of hematophagous arthropods contains bioactive molecules responsible for counteracting host haemostatic, inflammatory, and immuneresponses. Methods/Principal Findings Next generation sequencing and mass spectrometry-based protein identification were performed to investigate the content of triatomine R. neglectus saliva.We deposited 4,230 coding DNA sequences (CDS) in GenBank. A set of 636 CDS of proteins of putative secretory nature was extracted from the assembled reads, 73 of them confirmed by proteomic analysis. The sialome of R. neglectus was characterized and serine protease transcripts detected. The presence of ubiquitous protein families was revealed, including lipocalins, serine protease inhibitors, and antigen-5. Metalloproteases, disintegrins, and odorant binding protein families were less abundant. Conclusions/Significance The data presented improve our understanding of hematophagous arthropod sialomes, and aid in understanding hematophagy and the complex interplay among vectors and their vertebrate hosts

    Galaxy-galaxy lensing with the DES-CMASS catalogue: measurement and constraints on the galaxy-matter cross-correlation

    Get PDF
    The DMASS sample is a photometric sample from the DES Year 1 data set designed to replicate the properties of the CMASS sample from BOSS, in support of a joint analysis of DES and BOSS beyond the small overlapping area. In this paper, we present the measurement of galaxy–galaxy lensing using the DMASS sample as gravitational lenses in the DES Y1 imaging data. We test a number of potential systematics that can bias the galaxy–galaxy lensing signal, including those from shear estimation, photometric redshifts, and observing conditions. After careful systematic tests, we obtain a highly significant detection of the galaxy–galaxy lensing signal, with total S/N = 25.7. With the measured signal, we assess the feasibility of using DMASS as gravitational lenses equivalent to CMASS, by estimating the galaxy-matter cross-correlation coefficient rcc. By jointly fitting the galaxy–galaxy lensing measurement with the galaxy clustering measurement from CMASS, we obtain rcc=1.09+0.12−0.11 for the scale cut of 4h−1Mpc and rcc=1.06+0.13−0.12 for 12h−1Mpc in fixed cosmology. By adding the angular galaxy clustering of DMASS, we obtain rcc = 1.06 ± 0.10 for the scale cut of 4h−1Mpc and rcc = 1.03 ± 0.11 for 12h−1Mpc⁠. The resulting values of rcc indicate that the lensing signal of DMASS is statistically consistent with the one that would have been measured if CMASS had populated the DES region within the given statistical uncertainty. The measurement of galaxy–galaxy lensing presented in this paper will serve as part of the data vector for the forthcoming cosmology analysis in preparation

    Molecular imaging of rheumatoid arthritis by radiolabelled monoclonal antibodies: new imaging strategies to guide molecular therapies

    Get PDF
    The closing of the last century opened a wide variety of approaches for inflammation imaging and treatment of patients with rheumatoid arthritis (RA). The introduction of biological therapies for the management of RA started a revolution in the therapeutic armamentarium with the development of several novel monoclonal antibodies (mAbs), which can be murine, chimeric, humanised and fully human antibodies. Monoclonal antibodies specifically bind to their target, which could be adhesion molecules, activation markers, antigens or receptors, to interfere with specific inflammation pathways at the molecular level, leading to immune-modulation of the underlying pathogenic process. These new generation of mAbs can also be radiolabelled by using direct or indirect method, with a variety of nuclides, depending upon the specific diagnostic application. For studying rheumatoid arthritis patients, several monoclonal antibodies and their fragments, including anti-TNF-α, anti-CD20, anti-CD3, anti-CD4 and anti-E-selectin antibody, have been radiolabelled mainly with 99mTc or 111In. Scintigraphy with these radiolabelled antibodies may offer an exciting possibility for the study of RA patients and holds two types of information: (1) it allows better staging of the disease and diagnosis of the state of activity by early detection of inflamed joints that might be difficult to assess; (2) it might provide a possibility to perform ‘evidence-based biological therapy’ of arthritis with a view to assessing whether an antibody will localise in an inflamed joint before using the same unlabelled antibody therapeutically. This might prove particularly important for the selection of patients to be treated since biological therapies can be associated with severe side-effects and are considerably expensive. This article reviews the use of radiolabelled mAbs in the study of RA with particular emphasis on the use of different radiolabelled monoclonal antibodies for therapy decision-making and follow-up
    corecore