2,897 research outputs found

    Recent advances in minimally invasive colorectal cancer surgery

    Get PDF
    Laparoscopy has improved surgical treatment of various diseases due to its limited surgical trauma and has developed as an interesting therapeutic alternative for the resection of colorectal cancer. Despite numerous clinical advantages (faster recovery, less pain, fewer wound and systemic complications, faster return to work) the laparoscopic approach to colorectal cancer therapy has also resulted in unusual complications, i.e. ureteral and bladder injury which are rarely observed with open laparotomy. Moreover, pneumothorax, cardiac arrhythmia, impaired venous return, venous thrombosis as well as peripheral nerve injury have been associated with the increased intraabdominal pressure as well as patient's positioning during surgery. Furthermore, undetected small bowel injury caused by the grasping or cauterizing instruments may occur with laparoscopic surgery. In contrast to procedures performed for nonmalignant conditions, the benefits of laparoscopic resection of colorectal cancer must be weighed against the potential for poorer long-term outcomes of cancer patients that still has not been completely ruled out. In laparoscopic colorectal cancer surgery, several important cancer control issues still are being evaluated, i.e. the extent of lymph node dissection, tumor implantation at port sites, adequacy of intraperitoneal staging as well as the distance between tumor site and resection margins. For the time being it can be assumed that there is no significant difference in lymph node harvest between laparoscopic and open colorectal cancer surgery if oncological principles of resection are followed. As far as the issue of port site recurrence is concerned, it appears to be less prevalent than first thought (range 0-2.5%), and the incidence apparently corresponds with wound recurrence rates observed after open procedures. Short-term (3-5 years) survival rates have been published by a number of investigators, and survival rates after laparoscopic surgery appears to compare well with data collected after conventional surgery for colorectal cancer. However, long-term results of prospective randomized trials are not available. The data published so far indicate that the oncological results of laparoscopic surgery compare well with the results of the conventional open approach. Nonetheless, the limited information available from prospective studies leads us to propose that minimally invasive surgery for colorectal cancer surgery should only be performed within prospective trials

    Дослідження біотехнології виробництва сиру кисломолочного

    Get PDF

    Варіант розширення часового діапазону контролю витратомірів зважування

    Get PDF

    Виртуальная лаборатория на базе стенда AVR-микролаб

    Get PDF
    В статті розглянуті шляхи створення сучасної учбової лабораторії враховуючи матеріальні труднощі сучасної освіти.This paper is devoted to consider ways of making a modern student’s laboratory, taking into account financial troubles in the modern education

    Exceptional Points for Nonlinear Schroedinger Equations Describing Bose-Einstein Condensates of Ultracold Atomic Gases

    Get PDF
    The coalescence of two eigenfunctions with the same energy eigenvalue is not possible in Hermitian Hamiltonians. It is, however, a phenomenon well known from non-hermitian quantum mechanics. It can appear, e.g., for resonances in open systems, with complex energy eigenvalues. If two eigenvalues of a quantum mechanical system which depends on two or more parameters pass through such a branch point singularity at a critical set of parameters, the point in the parameter space is called an exceptional point. We will demonstrate that exceptional points occur not only for non-hermitean Hamiltonians but also in the nonlinear Schroedinger equations which describe Bose-Einstein condensates, i.e., the Gross-Pitaevskii equation for condensates with a short-range contact interaction, and with additional long-range interactions. Typically, in these condensates the exceptional points are also found to be bifurcation points in parameter space. For condensates with a gravity-like interaction between the atoms, these findings can be confirmed in an analytical way

    Algebraic characterization of X-states in quantum information

    Get PDF
    A class of two-qubit states called X-states are increasingly being used to discuss entanglement and other quantum correlations in the field of quantum information. Maximally entangled Bell states and "Werner" states are subsets of them. Apart from being so named because their density matrix looks like the letter X, there is not as yet any characterization of them. The su(2) X su(2) X u(1) subalgebra of the full su(4) algebra of two qubits is pointed out as the underlying invariance of this class of states. X-states are a seven-parameter family associated with this subalgebra of seven operators. This recognition provides a route to preparing such states and also a convenient algebraic procedure for analytically calculating their properties. At the same time, it points to other groups of seven-parameter states that, while not at first sight appearing similar, are also invariant under the same subalgebra. And it opens the way to analyzing invariant states of other subalgebras in bipartite systems.Comment: 4 pages, 1 figur
    corecore