167 research outputs found

    The mature part of proNGF induces the structure of its pro-peptide

    Get PDF
    AbstractHuman nerve growth factor (NGF) belongs to the structural family of cystine knot proteins, characterized by a disulfide pattern in which one disulfide bond threads through a ring formed by a pair of two other disulfides connecting two adjacent β-strands. Oxidative folding of NGF revealed that the pro-peptide of NGF stimulates in vitro structure formation. In order to learn more about this folding assisting protein fragment, a biophysical analysis of the pro-peptide structure has been performed. While proNGF is a non-covalent homodimer, the isolated pro-peptide is monomeric. No tertiary contacts stabilize the pro-peptide in its isolated form. In contrast, the pro-peptide appears to be structured when bound to the mature part. The results presented here demonstrate that the mature part stabilizes the structure in the pro-peptide region. This is the first report that provides a biophysical analysis of a pro-peptide of the cystine knot protein family

    Continuous optical in-line glucose monitoring and control in CHO cultures contributes to enhanced metabolic efficiency while maintaining darbepoetin alfa product quality

    Get PDF
    Great efforts are directed towards improving productivity, consistency and quality of biopharmaceutical processes and products. One particular area is the development of new sensors for continuous monitoring of critical bioprocess parameters by using online or in-line monitoring systems. Recently, we developed a glucose biosensor applicable in single-use, in-line and long-term glucose monitoring in mammalian cell bioreactors. Now, we integrated this sensor in an automated glucose monitoring and feeding system capable of maintaining stable glucose levels, even at very low concentrations. We compared this fed-batch feedback system at both low (< 1 mM) and high (40 mM) glucose levels with traditional batch culture methods, focusing on glycosylation and glycation of the recombinant protein darbepoetin alfa (DPO) produced by a CHO cell line. We evaluated cell growth, metabolite and product concentration under different glucose feeding strategies and show that continuous feeding, even at low glucose levels, has no harmful effects on DPO quantity and quality. We conclude that our system is capable of tight glucose level control throughout extended bioprocesses and has the potential to improve performance where constant maintenance of glucose levels is critical. © 2021 The Authors. Biotechnology Journal published by Wiley-VCH Gmb

    Protease-activated receptor-2 mediates the expression of inflammatory cytokines, antimicrobial peptides, and matrix metalloproteinases in keratinocytes in response to Propionibacterium acnes

    Get PDF
    Propionibacterium acnes (P. acnes) has been known to produce various exogenous proteases, however, their role in acne pathogenesis remains largely unknown. Proteases elicit cellular responses, at least in part, via proteinase-activated receptor-2 (PAR-2), which is known to mediate inflammation and immune response. In this study, we investigated whether proteases from P. acnes could activate PAR-2 on keratinocytes and induce pro-inflammatory cytokines, antimicrobial peptides (AMPs), and matrix metalloproteinases (MMPs) via PAR-2 signaling. We examined PAR-2 expression and protease activity in acne lesions using immunofluorescence staining and in situ zymography. The effect of the culture supernatant of P. acnes on Ca2+ signaling in immortalized keratinocytes (HaCaT) was measured using a fluorescence method. HaCaT cells were treated with P. acnes strain ATCC 6919 culture supernatant, with or without pretreatment with serine protease inhibitor or selective PAR-2 antagonist and the gene expression of pro-inflammatory cytokines, AMPs, and MMPs was detected using real-time reverse transcription-polymerase chain reaction. We found that the protease activity and PAR-2 expression were increased in acne lesions. The P. acnes culture supernatant induced calcium signaling in keratinocytes via PAR-2 and stimulated the mRNA expression of interleukin (IL)-1α, -8, tumor necrosis factor (TNF)-α, human beta defensin (hBD)-2, LL-37, MMP-1, -2, -3, -9, and -13 in keratinocytes, which was significantly inhibited by serine protease inhibitor as well as selective PAR-2 specific antagonist. These results indicate that PAR-2 plays an important role in the pathogenesis of acne by inducing inflammatory mediators in response to proteases secreted from P. acnes

    Necessary Parameters of Vertically Mounted Textile Substrates for Successful Cultivation of Cress for Low-Budget Vertical Farming

    Get PDF
    A growing population needs an expansion of agriculture to ensure a reliable supply of nutritious food. As a variable concept, vertical farming, becoming increasingly popular, can allow plant growth for local food produc­tion in the vertical sense on, e.g. facades in addition to the classical layered structure in buildings. As substrates, textile fabrics can be used as a sustainable approach in terms of reusability. In our experiment, we investigated which properties a textile should possess in order to be suitable for an application in vertical farming by the example of cress seeds. To determine the best-fitted fabric, four different textiles were mounted vertically, and were provided with controlled irrigation and illumination. Our results showed that a hairy textile surface as provided by weft-knitted plush is advantageous. There, the rooting of cress plants used in this experiment is easier and less complicated than along tightly meshed, flat surfaces, as for woven linen fabrics

    Conformational Plasticity of proNGF

    Get PDF
    Nerve Growth Factor is an essential protein that supports neuronal survival during development and influences neuronal function throughout adulthood, both in the central and peripheral nervous system. The unprocessed precursor of NGF, proNGF, seems to be endowed with biological functions distinct from those of the mature protein, such as chaperone-like activities and apoptotic and/or neurotrophic properties. We have previously suggested, based on Small Angle X-ray Scattering data, that recombinant murine proNGF has features typical of an intrinsically unfolded protein. Using complementary biophysical techniques, we show here new evidence that clarifies and widens this hypothesis through a detailed comparison of the structural properties of NGF and proNGF. Our data provide direct information about the dynamic properties of the pro-peptide and indicate that proNGF assumes in solution a compact globular conformation. The N-terminal pro-peptide extension influences the chemical environment of the mature protein and protects the protein from proteolytic digestion. Accordingly, we observe that unfolding of proNGF involves a two-steps mechanism. The distinct structural properties of proNGF as compared to NGF agree with and rationalise a different functional role of the precursor

    NGF and proNGF Regulate Functionally Distinct mRNAs in PC12 Cells: An Early Gene Expression Profiling

    Get PDF
    The biological activities of NGF and of its precursor proNGF are quite distinct, due to different receptor binding profiles, but little is known about how proNGF regulates gene expression. Whether proNGF is a purely pro-apoptotic molecule and/or simply a “less potent NGF” is still a matter of debate. We performed experiments to address this question, by verifying whether a proNGF specific transcriptional signature, distinct from that of NGF, could be identified. To this aim, we studied gene expression regulation by proNGF and NGF in PC12 cells incubated for 1 and 4 hours with recombinant NGF and proNGF, in its wild-type or in a furin-cleavage resistant form. mRNA expression profiles were analyzed by whole genome microarrays at early time points, in order to identify specific profiles of NGF and proNGF. Clear differences between the mRNA profiles modulated by the three neurotrophin forms were identified. NGF and proNGF modulate remarkably distinct mRNA expression patterns, with the gene expression profile regulated by NGF being significantly more complex than that by proNGF, both in terms of the total number of differentially expressed mRNAs and of the gene families involved. Moreover, while the total number of genes modulated by NGF increases dramatically with time, that by proNGFs is unchanged or reduced. We identified a subset of regulated genes that could be ascribed to a “pure proNGF” signalling, distinct from the “pure NGF” one. We also conclude that the composition of mixed NGF and proNGF samples, when the two proteins coexist, influences the profile of gene expression. Based on this comparison of the gene expression profiles regulated by NGF and its proNGF precursor, we conclude that the two proteins activate largely distinct transcriptional programs and that the ratio of NGF to proNGF in vivo can profoundly influence the pattern of regulated mRNAs

    Investigating the dynamics of recombinant protein secretion from a microalgal host

    Get PDF
    Lauersen KJ, Huber I, Wichmann J, et al. Investigating the dynamics of recombinant protein secretion from a microalgal host. Journal of Biotechnology. 2015;215:62-71

    Lysyl hydroxylase 3 localizes to epidermal basement membrane and Is reduced in patients with Recessive Dystrophic Epidermolysis Bullosa

    Get PDF
    Recessive dystrophic epidermolysis bullosa (RDEB) is caused by mutations in COL7A1 resulting in reduced or absent type VII collagen, aberrant anchoring fibril formation and subsequent dermal-epidermal fragility. Here, we identify a significant decrease in PLOD3 expression and its encoded protein, the collagen modifying enzyme lysyl hydroxylase 3 (LH3), in RDEB. We show abundant LH3 localising to the basement membrane in normal skin which is severely depleted in RDEB patient skin. We demonstrate expression is in-part regulated by endogenous type VII collagen and that, in agreement with previous studies, even small reductions in LH3 expression lead to significantly less secreted LH3 protein. Exogenous type VII collagen did not alter LH3 expression in cultured RDEB keratinocytes and we show that RDEB patients receiving bone marrow transplantation who demonstrate significant increase in type VII collagen do not show increased levels of LH3 at the basement membrane. Our data report a direct link between LH3 and endogenous type VII collagen expression concluding that reduction of LH3 at the basement membrane in patients with RDEB will likely have significant implications for disease progression and therapeutic intervention

    Skin Barrier Homeostasis in Atopic Dermatitis: Feedback Regulation of Kallikrein Activity

    Get PDF
    Atopic dermatitis (AD) is a widely spread cutaneous chronic disease characterised by sensitive reactions (eg. eczema) to normally innocuous elements. Although relatively little is understood about its underlying mechanisms due to its complexity, skin barrier dysfunction has been recognised as a key factor in the development of AD. Skin barrier homeostasis requires tight control of the activity of proteases, called kallikreins (KLKs), whose activity is regulated by a complex network of protein interactions that remains poorly understood despite its pathological importance. Characteristic symptoms of AD include the outbreak of inflammation triggered by external (eg. mechanical and chemical) stimulus and the persistence and aggravation of inflammation even if the initial stimulus disappears. These characteristic symptoms, together with some experimental data, suggest the presence of positive feedback regulation for KLK activity by inflammatory signals. We developed simple mathematical models for the KLK activation system to study the effects of feedback loops and carried out bifurcation analysis to investigate the model behaviours corresponding to inflammation caused by external stimulus. The model analysis confirmed that the hypothesised core model mechanisms capture the essence of inflammation outbreak by a defective skin barrier. Our models predicted the outbreaks of inflammation at weaker stimulus and its longer persistence in AD patients compared to healthy control. We also proposed a novel quantitative indicator for inflammation level by applying principal component analysis to microarray data. The model analysis reproduced qualitative AD characteristics revealed by this indicator. Our results strongly implicate the presence and importance of feedback mechanisms in KLK activity regulation. We further proposed future experiments that may provide informative data to enhance the system-level understanding on the regulatory mechanisms of skin barrier in AD and healthy individuals
    corecore