345 research outputs found

    Implications on SUSY breaking mediation mechanisms from observing Bs→μ+μ−B_s \to \mu^+ \mu^- and the muon (g−2)(g-2)

    Full text link
    We consider Bs→μ+μ−B_s \to \mu^+ \mu^- and the muon (g−2)μ(g-2)_\mu in various SUSY breaking mediation mechanisms. If the decay Bs→μ+μ−B_s \to \mu^+ \mu^- is observed at Tevatron Run II with a branching ratio larger than ∼2×10−8\sim 2 \times 10^{-8} , the noscale supergravity (including the gaugino mediation), the gauge mediation scenario with small number of messenger fields and low messenger scale, and a class of anomaly mediation scenarios will be excluded, even if they can accommodate a large muon (g−2)μ(g-2)_\mu. On the other hand, the minimal supergravity scenario and similar mechanisms derived from string models can accommodate this observation.Comment: 4 pages, 3 figure

    Spinning Conformal Correlators

    Get PDF
    We develop the embedding formalism for conformal field theories, aimed at doing computations with symmetric traceless operators of arbitrary spin. We use an index-free notation where tensors are encoded by polynomials in auxiliary polarization vectors. The efficiency of the formalism is demonstrated by computing the tensor structures allowed in n-point conformal correlation functions of tensors operators. Constraints due to tensor conservation also take a simple form in this formalism. Finally, we obtain a perfect match between the number of independent tensor structures of conformal correlators in d dimensions and the number of independent structures in scattering amplitudes of spinning particles in (d+1)-dimensional Minkowski space.Comment: 46 pages, 3 figures; V2: references added; V3: tiny misprint corrected in (A.9

    RS1 Cosmology as Brane Dynamics in an AdS/Schwarzschild Bulk

    Get PDF
    We explore various facets of the cosmology of the Randall-Sundrum scenario with two branes by considering the dynamics of the branes moving in a bulk AdS/Schwarzschild geometry. This approach allows us both to understand in more detail and from a different perspective the role of the stabilization of the hierarchy in the brane cosmology, as well as to extend to the situation where the metric contains a horizon. In particular, we explicitly determine how the Goldberger-Wise stabilization mechanism perturbs the background bulk geometry to produce a realistic cosmology.Comment: 9 pages, uses ReVTeX, no figure

    Rigidly Supersymmetric Gauge Theories on Curved Superspace

    Full text link
    In this note we construct rigidly supersymmetric gauged sigma models and gauge theories on certain Einstein four-manifolds, and discuss constraints on these theories. In work elsewhere, it was recently shown that on some nontrivial Einstein four-manifolds such as AdS4_4, N=1 rigidly supersymmetric sigma models are constrained to have target spaces with exact K\"ahler forms. Similarly, in gauged sigma models and gauge theories, we find that supersymmetry imposes constraints on Fayet-Iliopoulos parameters, which have the effect of enforcing that K\"ahler forms on quotient spaces be exact. We also discuss general aspects of universality classes of gauged sigma models, as encoded by stacks, and also discuss affine bundle structures implicit in these constructions.Comment: 23 pages; references added; more discussion added; v4: typos fixe

    Near Scale Invariance with Modified Dispersion Relations

    Get PDF
    We describe a novel mechanism to seed a nearly scale invariant spectrum of adiabatic perturbations during a non-inflationary stage. It relies on a modified dispersion relation that contains higher powers of the spatial momentum of matter perturbations. We implement this idea in the context of a massless scalar field in an otherwise perfectly homogeneous universe. The couplings of the field to background scalars and tensors give rise to the required modification of its dispersion relation, and the couplings of the scalar to matter result in an adiabatic primordial spectrum. This work is meant to explicitly illustrate that it is possible to seed nearly scale invariant primordial spectra without inflation, within a conventional expansion history.Comment: 7 pages and no figures. Uses RevTeX

    Compatibility of the new DAMA/NaI data on an annual modulation effect in WIMP direct search with a relic neutralino in supergravity schemes

    Get PDF
    Recent results of the DAMA/NaI experiment for WIMP direct detection point to a possible annual modulation effect in the detection rate. We show that these results, when interpreted in terms of a relic neutralino, are compatible with supergravity models. Together with the universal SUGRA scheme, we also consider SUGRA models where the unification condition in the Higgs mass parameters at GUT scale is relaxed.Comment: 10 pages, ReVTeX, 13 figures (included as PS files

    Dirac Neutrino Dark Matter

    Full text link
    We investigate the possibility that dark matter is made of heavy Dirac neutrinos with mass in the range [O(1) GeV- a few TeV] and with suppressed but non-zero coupling to the Standard Model Z as well as a coupling to an additional Z' gauge boson. The first part of this paper provides a model-independent analysis for the relic density and direct detection in terms of four main parameters: the mass, the couplings to the Z, to the Z' and to the Higgs. These WIMP candidates arise naturally as Kaluza-Klein states in extra-dimensional models with extended electroweak gauge group SU(2)_L* SU(2)_R * U(1). They can be stable because of Kaluza-Klein parity or of other discrete symmetries related to baryon number for instance, or even, in the low mass and low coupling limits, just because of a phase-space-suppressed decay width. An interesting aspect of warped models is that the extra Z' typically couples only to the third generation, thus avoiding the usual experimental constraints. In the second part of the paper, we illustrate the situation in details in a warped GUT model.Comment: 35 pages, 25 figures; v2: JCAP version; presentation and plots improved, results unchange

    Cosmic Rays as Probes of Large Extra Dimensions and TeV Gravity

    Get PDF
    If there are large extra dimensions and the fundamental Planck scale is at the TeV scale, then the question arises of whether ultra-high energy cosmic rays might probe them. We study the neutrino-nucleon cross section in these models. The elastic forward scattering is analyzed in some detail, hoping to clarify earlier discussions. We also estimate the black hole production rate. We study energy loss from graviton mediated interactions and conclude that they can not explain the cosmic ray events above the GZK energy limit. However, these interactions could start horizontal air showers with characteristic profile and at a rate higher than in the Standard Model.Comment: 14 pages, 4 figures; minor changes, replaced with version to be published in Phys. Rev.

    Report of the Beyond the MSSM Subgroup for the Tevatron Run II SUSY/Higgs Workshop

    Get PDF
    There are many low-energy models of supersymmetry breaking parameters which are motivated by theoretical and experimental considerations. Here, we discuss some of the lesser-known theories of low-energy supersymmetry, and outline their phenomenological consequences. In some cases, these theories have more gauge symmetry or particle content than the Minimal Supersymmetric Standard Model. In other cases, the parameters of the Lagrangian are unusual compared to commonly accepted norms (e.g., Wino LSP, heavy gluino LSP, light gluino, etc.). The phenomenology of supersymmetry varies greatly between the different models. Correspondingly, particular aspects of the detectors assume greater or lesser importance. Detection of supersymmetry and the determination of all parameters may well depend upon having the widest possible view of supersymmetry phenomenology.Comment: 78 pages, 49 figures, to appear in the Proceedings of the Tevatron Run II SUSY/Higgs Workshop. Editor: J. F. Gunion; BTMSSM Convenors: M. Chertok, H. Dreiner, G. Landsberg, J. F. Gunion, J.D. Well

    Anomalous Dimensions of Non-Chiral Operators from AdS/CFT

    Full text link
    Non-chiral operators with positive anomalous dimensions can have interesting applications to supersymmetric model building. Motivated by this, we develop a new method for obtaining the anomalous dimensions of non-chiral double-trace operators in N=1 superconformal field theories (SCFTs) with weakly-coupled AdS duals. Via the Hamiltonian formulation of AdS/CFT, we show how to directly compute the anomalous dimension as a bound state energy in the gravity dual. This simplifies previous approaches based on the four-point function and the OPE. We apply our method to a class of effective AdS5 supergravity models, and we find that the binding energy can have either sign. If such models can be UV completed, they will provide the first calculable examples of SCFTs with positive anomalous dimensions.Comment: 38 pages, 2 figures, refs adde
    • …
    corecore