3,292 research outputs found

    Comparative Assessment of the Factors and Conditions of the Formation of the Neoindustrial Social State in Russia and Germany

    Full text link
    Russia and Germany are traditionally reputed as countries with socially oriented economies. Namely, these countries are also close by the index of the share of real sector of economy at GDP. And however, Germany is a founder of social market household largely defined its leadership in world economy, in current conditions of crisis of “the state of general welfare” the search of a new model of development for Germany is also important as for Russia stood on the way of modernization and neo-industrialization. In the article, the hypothesis about forming of the new model of development uniting the social orientation of economy, processes of neoindustrialization, and globalization is made. At the same time, the social orientation is the main aim of socio-economic development, neo-industrialization is a way to achieve it, and globalization is a criterion presupposing more effective use of resources. Theoretical backgrounds of development of “social state” are generalized in the works of German and Russian classics put the backgrounds of economic humanism, it has allowed to prove the fatality of modernization process without considering of deep mental backgrounds and civilization codes of the nation development. The methodological approaches to development of a new model of neo-industrial social state with emphasizing different levels: global, national, local, individual are worked out; and the technique for estimation of factors and conditions of its development is proposed. The technique is tested on the example of Russia and Germany. The comparative analysis conducted has allowed to make the conclusion about similarity of target guidelines, initial conditions, problems and ways of their solving in these countries, that is to be considered both in a strategy and a policy of socio-economic development of these countries and by their international partnership

    Evolution of vacancy pores in bounded particles

    Full text link
    In the present work, the behavior of vacancy pore inside of spherical particle is investigated. On the assumption of quasistationarity of diffusion fluxes, the nonlinear equation set was obtained analytically, that describes completely pore behavior inside of spherical particle. Limiting cases of small and large pores are considered. The comparison of numerical results with asymptotic behavior of considered limiting cases of small and large pores is discussed.Comment: 25 pages, 10 figure

    Imaging of fuel mixture fraction oscillations in a driven system using acetone PLIF

    Get PDF
    Measurements of fuel mixture fraction are made for a jet flame in an acoustic chamber. Acoustic forcing creates a spatially-uniform, temporally-varying pressure field which results in oscillatory behavior in the flame . Forcing is at 22,27, 32, 37, and 55 Hz. To asses the oscillatory behavior, previous work included chemiluminescence, OH PUF, nitric oxide PUF imaging, and fuel mixture fraction measurements by infrared laser absorption. While these results illuminated what was happening to the flame chemistry, they did not provide a complete explanation as to why these things were happening. In this work, the fuel mixture fraction is measured through PUF of acetone, which is introduced into the fuel stream as a marker. This technique enables a high degree of spatial resolution of fuel/air mixture value. Both non-reacting and reacting cases were measured and comparisons are drawn with the results from the previous work. It is found that structure in the mixture fraction oscillations is a major contributor to the magnitude of the flame oscillations

    Ion and polymer dynamics in polymer electrolytes PPO-LiClO4: II. 2H and 7Li NMR stimulated-echo experiment

    Full text link
    We use 2H NMR stimulated-echo spectroscopy to measure two-time correlation functions characterizing the polymer segmental motion in polymer electrolytes PPO-LiClO4 near the glass transition temperature Tg. To investigate effects of the salt on the polymer dynamics, we compare results for different ether oxygen to lithium ratios, namely, 6:1, 15:1, 30:1 and infinity. For all compositions, we find nonexponential correlation functions, which can be described by a Kohlrausch function. The mean correlation times show quantitatively that an increase of the salt concentration results in a strong slowing down of the segmental motion. Consistently, for the high 6:1 salt concentration, a high apparent activation energy E_a=4.1eV characterizes the temperature dependence of the mean correlation times at Tg < T< 1.1T_g, while smaller values E_a=2.5eV are observed for moderate salt contents. The correlation functions are most nonexponential for 15:1 PPO-LiClO4, whereas the stretching is reduced for higher and lower salt concentrations. A similar dependence of the correlation functions on the evolution time in the presence and in the absence of ions indicates that addition of salt hardly affects the reorientational mechanism. For all compositions, mean jump angles of about 15 degree characterize the segmental reorientation. In addition, comparison of results from 2H and 7Li NMR stimulated-echo experiments suggests a coupling of ion and polymer dynamics in 15:1 PPO-LiClO4.Comment: 14 pages, 12 figure

    Equidistribution Rates, Closed String Amplitudes, and the Riemann Hypothesis

    Get PDF
    We study asymptotic relations connecting unipotent averages of Sp(2g,Z)Sp(2g,\mathbb{Z}) automorphic forms to their integrals over the moduli space of principally polarized abelian varieties. We obtain reformulations of the Riemann hypothesis as a class of problems concerning the computation of the equidistribution convergence rate in those asymptotic relations. We discuss applications of our results to closed string amplitudes. Remarkably, the Riemann hypothesis can be rephrased in terms of ultraviolet relations occurring in perturbative closed string theory.Comment: 15 page
    corecore