We use 2H NMR stimulated-echo spectroscopy to measure two-time correlation
functions characterizing the polymer segmental motion in polymer electrolytes
PPO-LiClO4 near the glass transition temperature Tg. To investigate effects of
the salt on the polymer dynamics, we compare results for different ether oxygen
to lithium ratios, namely, 6:1, 15:1, 30:1 and infinity. For all compositions,
we find nonexponential correlation functions, which can be described by a
Kohlrausch function. The mean correlation times show quantitatively that an
increase of the salt concentration results in a strong slowing down of the
segmental motion. Consistently, for the high 6:1 salt concentration, a high
apparent activation energy E_a=4.1eV characterizes the temperature dependence
of the mean correlation times at Tg < T< 1.1T_g, while smaller values E_a=2.5eV
are observed for moderate salt contents. The correlation functions are most
nonexponential for 15:1 PPO-LiClO4, whereas the stretching is reduced for
higher and lower salt concentrations. A similar dependence of the correlation
functions on the evolution time in the presence and in the absence of ions
indicates that addition of salt hardly affects the reorientational mechanism.
For all compositions, mean jump angles of about 15 degree characterize the
segmental reorientation. In addition, comparison of results from 2H and 7Li NMR
stimulated-echo experiments suggests a coupling of ion and polymer dynamics in
15:1 PPO-LiClO4.Comment: 14 pages, 12 figure