57 research outputs found

    Maternal Use of Antibiotics, Hospitalisation for Infection during Pregnancy, and Risk of Childhood Epilepsy: A Population-Based Cohort Study

    Get PDF
    BACKGROUND: Maternal infection during pregnancy may be a risk factor for epilepsy in offspring. Use of antibiotics is a valid marker of infection. METHODOLOGY/PRINCIPAL FINDINGS: To examine the relationship between maternal infection during pregnancy and risk of childhood epilepsy we conducted a historical cohort study of singletons born in northern Denmark from 1998 through 2008 who survived ≥29 days. We used population-based medical databases to ascertain maternal use of antibiotics or hospital contacts with infection during pregnancy, as well as first-time hospital contacts with a diagnosis of epilepsy among offspring. We compared incidence rates (IR) of epilepsy among children of mothers with and without infection during pregnancy. We examined the outcome according to trimester of exposure, type of antibiotic, and total number of prescriptions, using Poisson regression to estimate incidence rate ratios (IRRs) while adjusting for covariates. Among 191,383 children in the cohort, 948 (0.5%) were hospitalised or had an outpatient visit for epilepsy during follow-up, yielding an IR of 91 per 100 000 person-years (PY). The five-year cumulative incidence of epilepsy was 4.5 per 1000 children. Among children exposed prenatally to maternal infection, the IR was 117 per 100,000 PY, with an adjusted IRR of 1.40 (95% confidence interval (CI): 1.22-1.61), compared with unexposed children. The association was unaffected by trimester of exposure, antibiotic type, or prescription count. CONCLUSIONS/SIGNIFICANCE: Prenatal exposure to maternal infection is associated with an increased risk of epilepsy in childhood. The similarity of estimates across types of antibiotics suggests that processes common to all infections underlie this outcome, rather than specific pathogens or drugs

    Opposite Effects of HIV-1 p17 Variants on PTEN Activation and Cell Growth in B Cells

    Get PDF
    The HIV-1 matrix protein p17 is a structural protein that can act in the extracellular environment to deregulate several functions of immune cells, through the interaction of its NH2-terminal region with a cellular surface receptor (p17R). The intracellular events triggered by p17/p17R interaction have been not completely characterized yet. In this study we analyze the signal transduction pathways induced by p17/p17R interaction and show that in Raji cells, a human B cell line stably expressing p17R on its surface, p17 induces a transient activation of the transcriptional factor AP-1. Moreover, it was found to upregulate pERK1/2 and downregulate pAkt, which are the major intracellular signalling components involved in AP-1 activation. These effects are mediated by the COOH-terminal region of p17, which displays the capability of keeping PTEN, a phosphatase that regulates the PI3K/Akt pathway, in an active state through the serin/threonin (Ser/Thr) kinase ROCK. Indeed, the COOH-terminal truncated form of p17 (p17Δ36) induced activation of the PI3K/Akt pathway by maintaining PTEN in an inactive phosphorylated form. Interestingly, we show that among different p17s, a variant derived from a Ugandan HIV-1 strain, named S75X, triggers an activation of PI3K/Akt signalling pathway, and leads to an increased B cell proliferation and malignant transformation. In summary, this study shows the role of the COOH-terminal region in modulating the p17 signalling pathways so highlighting the complexity of p17 binding to and signalling through its receptor(s). Moreover, it provides the first evidence on the presence of a p17 natural variant mimicking the p17Δ36-induced signalling in B cells and displaying the capacity of promoting B cell growth and tumorigenesis

    Hypoxia and the Hypoxic Response Pathway Protect against Pore-Forming Toxins in C. elegans

    Get PDF
    Pore-forming toxins (PFTs) are by far the most abundant bacterial protein toxins and are important for the virulence of many important pathogens. As such, cellular responses to PFTs critically modulate host-pathogen interactions. Although many cellular responses to PFTs have been recorded, little is understood about their relevance to pathological or defensive outcomes. To shed light on this important question, we have turned to the only genetic system for studying PFT-host interactions—Caenorhabditis elegans intoxication by Crystal (Cry) protein PFTs. We mutagenized and screened for C. elegans mutants resistant to a Cry PFT and recovered one mutant. Complementation, sequencing, transgenic rescue, and RNA interference data demonstrate that this mutant eliminates a gene normally involved in repression of the hypoxia (low oxygen response) pathway. We find that up-regulation of the C. elegans hypoxia pathway via the inactivation of three different genes that normally repress the pathway results in animals resistant to Cry PFTs. Conversely, mutation in the central activator of the hypoxia response, HIF-1, suppresses this resistance and can result in animals defective in PFT defenses. These results extend to a PFT that attacks mammals since up-regulation of the hypoxia pathway confers resistance to Vibrio cholerae cytolysin (VCC), whereas down-regulation confers hypersusceptibility. The hypoxia PFT defense pathway acts cell autonomously to protect the cells directly under attack and is different from other hypoxia pathway stress responses. Two of the downstream effectors of this pathway include the nuclear receptor nhr-57 and the unfolded protein response. In addition, the hypoxia pathway itself is induced by PFT, and low oxygen is protective against PFT intoxication. These results demonstrate that hypoxia and induction of the hypoxia response protect cells against PFTs, and that the cellular environment can be modulated via the hypoxia pathway to protect against the most prevalent class of weapons used by pathogenic bacteria

    Stripping the Boss : The Powerful Role of Humor in the Egyptian Revolution 2011

    Get PDF
    The Egyptian Revolution 2011 has shaken the Arab world and stirred up Middle-East politics. Moreover, it caused a rush in political science and the neighboring disciplines, which had not predicted an event like this and now have troubles explaining it. While many things can be learned from the popular uprising, and from the limitations of previous scholarship, our focus will be on a moral resource, which has occasionally been noticed, but not sufficiently explored: the role of humor in keeping up the spirit of the Revolution. For eighteen days, protestors persevered at Liberation Square in Central Cairo, the epicenter of resistance; at times a few dozens, at times hundreds of thousands. What they did was to fight the terror of the regime, which reached absurd peaks during those days, with humor – successfully. We offer a social-functionalist account of the uprising, which includes behavioral as well as cultural levels of analysis, and illuminates how humorous means helped to achieve deadly serious goals. By reconstructing how Egyptians laughed themselves into democracy, we outline a social psychology of resistance, which uses humor both as a sword and a shield.Peer reviewe

    Participation in Corporate Governance

    Full text link
    • …
    corecore