30 research outputs found
Field application of ZnO and TiO2 nanoparticles on agricultural plants
Engineered nanoparticles (ENPs) have potential application in precision farming and sustainable agriculture. Studies have shown that ENPs enhance the efficiency of the delivery of agrochemicals and thus, have the potential to positively affect the environment, thereby improving the growth and health of the crops. However, the majority of the research on the effects of ENPs on plants and in agricultural applications have been limited to controlled laboratory conditions. These conditions do not fully consider various aspects inherent to the growth of agricultural plants in fields under changing weather and climate. Some of the most investigated ENPs in the agricultural research area are ZnO nanoparticles (ZnO NPs) and TiO2 nanoparticles (TiO2 NPs). ZnO NPs have the potential to increase crop production and stress resistance, mainly by the slow release of Zn ions to crops. Unlike ZnO NPs, TiO2 NPs have less well-understood means of action, and are generally considered as plant growth promoter. This mini review presents information compiled for ZnO and TiO2 NPs(,) their influence on agricultural plants with emphasis on particularly effect on plant growth, nutrient distribution and pollution remediation under field conditions. It is concluded that in order to gain a broader perspective, more field studies are needed, particularly multigeneration studies, to fully understand the effects of the ENPs on agricultural plants' growth and improvement of their health.Web of Science1111art. no. 228
Influence of Al Content on the Corrosion Behavior of Biodegradable Magnesium Alloys in Simulated Physiological Solution
Magnesium (Mg) and its alloys have gained wide popularity in the biomedical field as promising candidates for degradable implant applications. Among Mg alloys, AZ (aluminum and zinc) series alloys are the most widely investigated for implant applications and reported in the literature. In all AZ series Mg alloys, aluminium content is the influencing factor that imparts different properties to the Mg alloys. In the present study, pure Mg, AZ31 and AZ91 Mg alloys were selected and the effect of aluminium content on the biocorrosion has been investigated in Ringer’s solution. It was a clear observation that the increased aluminum content has a severe effect on the degradation behavior of magnesium. From the weight loss measurements, AZ31 has shown lower corrosion rate compared with pure Mg and AZ91. The surface morphologies also showed the formation of more pits on pure Mg and AZ91 Mg alloy compared with AZ31 Mg alloy. By correlating the degradation behavior with the microstructure, galvanic corrosion was found to be the main reason behind the accelerated corrosion rate in AZ91 Mg alloy compared with AZ31 alloy. The phases on the corroded sample surfaces were examined by X-ray diffraction (XRD) method and scanning electron microscopy (SEM) and found that the corrosion products which were deposited on the surfaces provided protection against the chloride ions which was indicated by the decreased corrosion rates as immersion time was increased
Significance of phosphate nano-fertilizers foliar application : a brief real-field study of quantitative, physiological parameters, and agro-ecological diversity in sunflower
SUPPLEMENTARY MATERIALS : FIGURE S1: X-ray diffraction powder patterns of hydroxylapatite formed from Sheelavati fish bone; FIGURE S2: X-ray diffraction powder patterns the mixture of parascholzite and calcium zinc phosphate (nano/macro-ZnPhos) formed by chemical co-precipitation method; TABLE S1: Basic values of electrical conductivity and the pH of applied nano-fertilizers compared to applied water as a control variant; TABLE S2: Comparison of monthly temperature and precipitation characteristics during the vegetation season of 2022 with the longterm norm from 1991 to 2020; TABLE S3: Abundance and dominance of the Coleoptera family in the studied treatments with sunflower at the Nitra-Dolná Malanta locality during vegetation season 2022. TABLE S4: Abundance and dominance of the Carabidae species in the studied treatments with sunflower at the Nitra-Dolná Malanta locality during vegetation season of 2022.One of the challenges in agriculture practices is guaranteeing an adequate and bioavailable
phosphorus supply for plants on phosphorus-deficient soils. A promising alternative lies in the
utilization of phosphate nano-fertilizers (NFs) through spray applications. Therefore, this short-term
study aimed to investigate the yet undetermined widespread impact of P-NFs on crops characterized
by broad leaves, an intensive rate of photosynthesis, and belonging to the oilseed plant, sunflower
(Helianthus annuus L.). To achieve this, NFs were applied at lower concentrations of various phosphatebased
NFs, including (i) nano-hydroxylapatite (nano-Hap) and (ii) a mixture of nano-calcium zinc
phosphate and macro-sized parascholzite (nano/macro-ZnPhos), in comparison to the NF-free
control. The study was carried out under authentic field conditions during the 2022 vegetation
season at the Dolná Malanta site within the Central European Region. The empirical evidence
presented herein indicates that the utilization of biocompatible and bioactive nano-Hap, initially
engineered for biomedical applications, and nano/macro-ZnPhos, now foliarly applied at reduced
concentrations, elicited a statistically significant elevation in quantitative parameters and seasonal
physiological responses. The parameters analyzed included head diameter, dry head weight, seed
yield per hectare, nutritional seed oiliness, etc. as well as the physiological normalized difference
vegetation index (NDVI), stomatal conductance index (Ig), and crop water stress index (CWSI). In
terms of agro-ecological terrestrial bio/diversity, it was evident that the nano/macro-ZnPhos was the
most hospitable variant for the terrestric insect community, but surprisingly, the agronomically more
popular nano-Hap showed only statistically insignificant changes in the diversity of the detected
communities. However, the relevance of outcomes highlighted using nano-fertilizers, supporting the
concept of precision and sustainable agriculture under field conditions.The Grant Agency of the Slovak Republic Ministry of Education, the Slovak Academy of Sciences, and by the European Union foundation (Erasmus Plus Programme for academic staff mobility) and postgraduate program sponsored by the National Scholarship Programme of the Slovak Republic trough SAIA Organization.https://www.mdpi.com/journal/agronomyam2024ChemistrySDG-15:Life on lan
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. METHODS: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. FUNDING: Bill & Melinda Gates Foundation
A review on developing high-performance ZE41 magnesium alloy by using bulk deformation and surface modification methods
Magnesium (Mg) alloys are generally used in light-weight structural applications due to their higher specific strength. However, the usage of these Mg alloys is limited due to their poor formability at room temperature, which is attributed to lower count of slip systems associated with the hcp crystal structure. To address these limitations, several new magnesium alloys and also many processing strategies have been developed and reported in the literature. ZE41 Mg is an alloy with significant quantities of zinc (Zn) and rare earth (RE) elements and has emerged as a promising material for aerospace, automotive, electronics, biomedical and many other industries. To make this alloy more competitive and viable, it should possess better mechanical and corrosion properties. Hence, the current paper reviews the effect of bulk mechanical processing on grain refinement, microstructural modification, and corresponding changes in the mechanical behaviour of ZE41 Mg alloy. Further, the effect of various surface modification techniques on altering the surface microstructure and surface properties such as wear and corrosion are also briefly summarized and presented. This review also discusses the challenges and the future perspectives in developing high-performing ZE41 Mg alloys
Influence of heat treatment on the machinability and corrosion behavior of AZ91 Mg alloy
In the present study, AZ91 Mg alloy was heat treated at 410 °C for 6, 12 and 24 h to investigate the influence of heat treatment on machinability and corrosion behavior. The effect of soaking time on the amount and distribution of Mg17Al12 (β – phase) was analyzed under the optical microscope. Microhardness measurements demonstrated the increased hardness with increased heat treatment soaking time, which can be attributed to the solid solution strengthening. The influence of super saturated α-grains on reducing the cutting force (Fz) with respect to increased cutting speed was observed as prominent. The corrosion behavior of the heat treated specimens was studied by conducting electrochemical tests. Surprisingly, corrosion rate of heat treated samples was observed as increased compared with the base material. From the results, it is evident that the machinability of AZ91 Mg alloy can be improved by producing super saturated α-grains through heat treatment but at the cost of losing corrosion resistance. Keywords: AZ91 Mg alloy, Solid solution, Turning, Corrosion, Machinabilit