5 research outputs found

    Investigation of Laurus Tamala leaves extract as an environmentally acceptable corrosion inhibitor for soft steel in 1M HCl: Electrochemical, DFT, and surface characterization techniques

    Get PDF
    Laurus Tamala leaves extract (LTLE) has been employed as a soft steel corrosion inhibitor in a 1M Hydrochloric acid media. Chemical (weight loss) and electrochemical investigations were carried out to assess the corrosion rate and percentage inhibition efficiency of the extract. The electrochemical polarization results have demonstrated that plant leaves extract functions as a mixed type inhibitor. The stability of the inhibitor is tested at elevated temperatures by weight loss method. The corrosion inhibition mechanism is interpreted through adsorption mechanism, and the LTLE components has obeyed the Langmuir adsorption isotherm for soft steel. The interaction of the components of the extract is assessed through FT-IR technique. The surface morphology, roughness and hydrophobicity in presence and absence of the extract have been characterized through SEM, AFM and water contact angle techniques respectively. The highest inhibitory efficiency is 96.21% for 24 h as recorded by weight loss method. Additionally, the DFT computations has revealed the inhibitor’s adsorption through electron donor-acceptor interactions

    Investigation of Laurus Tamala leaves extract as an environmentally acceptable corrosion inhibitor for soft steel in 1M HCl: Electrochemical, DFT, and surface characterization techniques

    No full text
    492-505Laurus Tamala leaves extract (LTLE) has been employed as a soft steel corrosion inhibitor in a 1M Hydrochloric acid media. Chemical (weight loss) and electrochemical investigations were carried out to assess the corrosion rate and percentage inhibition efficiency of the extract. The electrochemical polarization results have demonstrated that plant leaves extract functions as a mixed type inhibitor. The stability of the inhibitor is tested at elevated temperatures by weight loss method. The corrosion inhibition mechanism is interpreted through adsorption mechanism, and the LTLE components has obeyed the Langmuir adsorption isotherm for soft steel. The interaction of the components of the extract is assessed through FT-IR technique. The surface morphology, roughness and hydrophobicity in presence and absence of the extract have been characterized through SEM, AFM and water contact angle techniques respectively. The highest inhibitory efficiency is 96.21% for 24 h as recorded by weight loss method. Additionally, the DFT computations has revealed the inhibitor’s adsorption through electron donor-acceptor interactions

    Multi-Functional Applications of H-Glass Embedded with Stable Plasmonic Gold Nanoislands

    No full text
    Metal nanoparticles (MNPs) are synthesized using various techniques on diverse substrates that significantly impact their properties. However, among the substrate materials investigated, the major challenge is the stability of MNPs due to their poor adhesion to the substrate. Herein, it is demonstrated how a newly developed H-glass can concurrently stabilize plasmonic gold nanoislands (GNIs) and offer multifunctional applications. The GNIs on the H-glass are synthesized using a simple yet, robust thermal dewetting process. The H-glass embedded with GNIs demonstrates versatility in its applications, such as i) acting as a room temperature chemiresistive gas sensor (70% response for NO2 gas); ii) serving as substrates for surface-enhanced Raman spectroscopy for the identifications of Nile blue (dye) and picric acid (explosive) analytes down to nanomolar concentrations with enhancement factors of 4.8 × 106 and 6.1 × 105, respectively; and iii) functioning as a nonlinear optical saturable absorber with a saturation intensity of 18.36 × 1015 W m−2 at 600 nm, and the performance characteristics are on par with those of materials reported in the existing literature. This work establishes a facile strategy to develop advanced materials by depositing metal nanoislands on glass for various functional applications.</p
    corecore