715 research outputs found

    HIF Transcription Factor Expression and Induction of Hypoxic Response Genes in a Retroperitoneal Angiosarcoma

    Get PDF
    Angiosarcoma is a rare and highly aggressive tumor of endothelial origin. The molecular mechanisms driving angiosarcoma growth have not been fully elucidated, although autocrine stimulation by vascular endothelial growth factor (VEGF) secretion may play a role in the pathogenesis of this tumor. We identified a patient with a very rare form of angiosarcoma arising from the retroperitoneum. Immunohistochemical analysis demonstrated widespread up-regulation of the hypoxic response pathway as a mechanism of enhanced VEGF expression. Disordered regulation of the hypoxic response pathway can result in the expression of factors such as VEGF and erythropoietin, which may promote autocrine tumor growth in angiosarcoma

    Primary bony non-Hodgkin lymphoma of the cervical spine: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Non-Hodgkin lymphoma primarily originating from the bone is exceedingly rare. To our knowledge, this is the first report of primary bone lymphoma presenting with progressive cord compression from an origin in the cervical spine. Herein, we discuss the unusual location in this case, the presenting symptoms, and the management of this disease.</p> <p>Case presentation</p> <p>We report on a 23-year-old Caucasian-American man who presented with two months of night sweats, fatigue, parasthesias, and progressive weakness that had progressed to near quadriplegia. Magnetic resonance (MR) imaging demonstrated significant cord compression seen primarily at C7. Surgical management, with corpectomy and dorsal segmental fusion, in combination with adjuvant chemotherapy and radiation therapy, halted the progression of the primary disease and preserved neurological function. Histological analysis demonstrated an aggressive anaplastic large cell lymphoma.</p> <p>Conclusion</p> <p>Isolated primary bony lymphoma of the spine is exceedingly rare. As in our case, the initial symptoms may be the result of progressive cervical cord compression. Anterior corpectomy with posterolateral decompression and fusion succeeded in preventing progressive neurologic decline and maintaining quality of life. The reader should be aware of the unique presentation of this disease and that surgical management is a successful treatment strategy.</p

    Patients with ClearCode34-identified molecular subtypes of clear cell renal cell carcinoma represent unique populations with distinct comorbidities

    Get PDF
    The 34-gene classifier, ClearCode34, identifies prognostically distinct molecular subtypes of clear cell renal cell carcinoma (ccRCC) termed ccA and ccB. The primary objective of this study was to describe clinical characteristics and comorbidities of relevance in patients stratified by ClearCode34

    Pro-apoptotic Bax is the major and Bak an auxiliary effector in cytokine deprivation-induced mast cell apoptosis

    Get PDF
    The process of apoptosis in immune cells like mast cells is essential to regain homeostasis after an inflammatory response. The intrinsic pathway of apoptosis is ultimately controlled by the pro-apoptotic Bcl-2 family members Bax and Bak, which upon activation oligomerize to cause increased permeabilization of the mitochondria outer membrane leading to cell death. We examined the role of Bax and Bak in cytokine deprivation-induced apoptosis in mast cells using connective tissue-like mast cells and mucosal-like mast cells derived from bax−/−, bak−/− and bax−/−bak−/− mice. Although both Bax and Bak were expressed at readily detectable protein levels, we found a major role for Bax in mediating mast cell apoptosis induced by cytokine deprivation. We analyzed cell viability by propidium iodide exclusion and flow cytometry after deprivation of vital cytokines for each mast cell population. Upon cytokine withdrawal, bak−/− mast cells died at a similar rate as wild type, whereas bax−/− and bax−/−bak−/− mast cells were partially or completely resistant to apoptosis, respectively. The total resistance seen in bax−/−bak−/− mast cells is comparable with mast cells deficient of both pro-apoptotic Bim and Puma or mast cells overexpressing anti-apoptotic Bcl-2. These results show that Bax has a predominant and Bak a minor role in cytokine deprivation-induced apoptosis in both connective tissue-like and mucosal-like mast cells

    Phosphoinositide-dependent kinase 1 controls migration and malignant transformation but not cell growth and proliferation in PTEN-null lymphocytes

    Get PDF
    In normal T cell progenitors, phosphoinositide-dependent kinase l (PDK1)–mediated phosphorylation and activation of protein kinase B (PKB) is essential for the phosphorylation and inactivation of Foxo family transcription factors, and also controls T cell growth and proliferation. The current study has characterized the role of PDK1 in the pathology caused by deletion of the tumor suppressor phosphatase and tensin homologue deleted on chromosome 10 (PTEN). PDK1 is shown to be essential for lymphomagenesis caused by deletion of PTEN in T cell progenitors. However, PTEN deletion bypasses the normal PDK1-controlled signaling pathways that determine thymocyte growth and proliferation. PDK1 does have important functions in PTEN-null thymocytes, notably to control the PKB–Foxo signaling axis and to direct the repertoire of adhesion and chemokine receptors expressed by PTEN-null T cells. The results thus provide two novel insights concerning pathological signaling caused by PTEN loss in lymphocytes. First, PTEN deletion bypasses the normal PDK1-controlled metabolic checkpoints that determine cell growth and proliferation. Second, PDK1 determines the cohort of chemokine and adhesion receptors expressed by PTEN-null cells, thereby controlling their migratory capacity

    Systematic identification of signaling pathways with potential to confer anticancer drug resistance

    Get PDF
    Cancer cells can activate diverse signaling pathways to evade the cytotoxic action of drugs. We created and screened a library of barcoded pathway-activating mutant complementary DNAs to identify those that enhanced the survival of cancer cells in the presence of 13 clinically relevant, targeted therapies. We found that activation of the RAS-MAPK (mitogen-activated protein kinase), Notch1, PI3K (phosphoinositide 3-kinase)–mTOR (mechanistic target of rapamycin), and ER (estrogen receptor) signaling pathways often conferred resistance to this selection of drugs. Activation of the Notch1 pathway promoted acquired resistance to tamoxifen (an ER-targeted therapy) in serially passaged breast cancer xenografts in mice, and treating mice with a γ-secretase inhibitor to inhibit Notch signaling restored tamoxifen sensitivity. Markers of Notch1 activity in tumor tissue correlated with resistance to tamoxifen in breast cancer patients. Similarly, activation of Notch1 signaling promoted acquired resistance to MAPK inhibitors in BRAF[superscript V600E] melanoma cells in culture, and the abundance of Notch1 pathway markers was increased in tumors from a subset of melanoma patients. Thus, Notch1 signaling may be a therapeutic target in some drug-resistant breast cancers and melanomas. Additionally, multiple resistance pathways were activated in melanoma cell lines with intrinsic resistance to MAPK inhibitors, and simultaneous inhibition of these pathways synergistically induced drug sensitivity. These data illustrate the potential for systematic identification of the signaling pathways controlling drug resistance that could inform clinical strategies and drug development for multiple types of cancer. This approach may also be used to advance clinical options in other disease contexts.National Institutes of Health (U.S.) (Grant CA103866)National Institutes of Health (U.S.) (Grant AI07389

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    VHL substrate transcription factor ZHX2 as an oncogenic driver in clear cell renal cell carcinoma

    Get PDF
    Inactivation of the von Hippel-Lindau (VHL) E3 ubiquitin ligase protein is a hallmark of clear cell renal cell carcinoma (ccRCC). Identifying how pathways affected by VHL loss contribute to ccRCC remains challenging. We used a genome-wide in vitro expression strategy to identify proteins that bind VHL when hydroxylated. Zinc fingers and homeoboxes 2 (ZHX2) was found as a VHL target, and its hydroxylation allowed VHL to regulate its protein stability. Tumor cells from ccRCC patients with VHL loss-of-function mutations usually had increased abundance and nuclear localization of ZHX2. Functionally, depletion of ZHX2 inhibited VHL-deficient ccRCC cell growth in vitro and in vivo. Mechanistically, integrated chromatin immunoprecipitation sequencing and microarray analysis showed that ZHX2 promoted nuclear factor κB activation. These studies reveal ZHX2 as a potential therapeutic target for ccRCC
    corecore