18 research outputs found

    Cerebral Cavernous Malformations: An Update on Prevalence, Molecular Genetic Analyses, and Genetic Counselling

    Get PDF
    Based on the latest gnomAD dataset, the prevalence of symptomatic hereditary cerebral cavernous malformations (CCMs) prone to cause epileptic seizures and stroke-like symptoms was re-evaluated in this review and calculated to be 1:5,400-1:6,200. Furthermore, state-of-the-art molecular genetic analyses of the known CCM loci are described which reach an almost 100% mutation detection rate for familial CCMs if whole genome sequencing is performed for seemingly mutation-negative families. An update on the spectrum of CCM1, CCM2, and CCM3 mutations demonstrates that deep-intronic mutations and submicroscopic copy-number neutral genomic rearrangements are rare. Finally, this review points to current guidelines on genetic counselling, neuroimaging, medical as well as neurosurgical treatment and highlights the formation of active patient organizations in various countries

    Cerebral Cavernous Malformations: An Update on Prevalence, Molecular Genetic Analyses, and Genetic Counselling

    No full text
    Based on the latest gnomAD dataset, the prevalence of symptomatic hereditary cerebral cavernous malformations (CCMs) prone to cause epileptic seizures and stroke-like symptoms was re-evaluated in this review and calculated to be 1:5,400-1:6,200. Furthermore, state-of-the-art molecular genetic analyses of the known CCM loci are described which reach an almost 100% mutation detection rate for familial CCMs if whole genome sequencing is performed for seemingly mutation-negative families. An update on the spectrum of CCM1, CCM2, and CCM3 mutations demonstrates that deep-intronic mutations and submicroscopic copy-number neutral genomic rearrangements are rare. Finally, this review points to current guidelines on genetic counselling, neuroimaging, medical as well as neurosurgical treatment and highlights the formation of active patient organizations in various countries

    Anabel: An Online Tool for the Real-Time Kinetic Analysis of Binding Events

    No full text
    Anabel ( Ana lysis of b inding e vents +  l ) is an open source online software tool ( www.skscience.org/anabel ) for the convenient analysis of molecular binding interactions. Currently, exported datasets from Biacore (surface plasmon resonance [SPR]), FortéBio (biolayer interference [BLI]), and Biametrics (single color reflectometry [SCORE]) can be uploaded and evaluated in Anabel using 2 different evaluation methods. Moreover, a universal data template format is provided to upload any other binding dataset to Anabel. This enables an easier comparison of different analysis methods for all users. Furthermore, a guide was established in Anabel to help inexperienced users to obtain optimal results. In addition, expert features can be used to optimize and control the fit of the binding model to the measured data. We tried to make the process of fitting and evaluating as easy as possible through the use of an intuitive user interface. At the end of every analysis, a single excel file, containing all results and graphs of the performed analysis, can be downloaded

    Nanocellulose composites as smart devices with chassis, light-directed DNA Storage, engineered electronic properties, and chip integration

    No full text
    The rapid development of green and sustainable materials opens up new possibilities in the field of applied research. Such materials include nanocellulose composites that can integrate many components into composites and provide a good chassis for smart devices. In our study, we evaluate four approaches for turning a nanocellulose composite into an information storage or processing device: 1) nanocellulose can be a suitable carrier material and protect information stored in DNA. 2) Nucleotide-processing enzymes (polymerase and exonuclease) can be controlled by light after fusing them with light-gating domains; nucleotide substrate specificity can be changed by mutation or pH change (read-in and read-out of the information). 3) Semiconductors and electronic capabilities can be achieved: we show that nanocellulose is rendered electronic by iodine treatment replacing silicon including microstructures. Nanocellulose semiconductor properties are measured, and the resulting potential including single-electron transistors (SET) and their properties are modeled. Electric current can also be transported by DNA through G-quadruplex DNA molecules; these as well as classical silicon semiconductors can easily be integrated into the nanocellulose composite. 4) To elaborate upon miniaturization and integration for a smart nanocellulose chip device, we demonstrate pH-sensitive dyes in nanocellulose, nanopore creation, and kinase micropatterning on bacterial membranes as well as digital PCR micro-wells. Future application potential includes nano-3D printing and fast molecular processors (e.g., SETs) integrated with DNA storage and conventional electronics. This would also lead to environment-friendly nanocellulose chips for information processing as well as smart nanocellulose composites for biomedical applications and nano-factories
    corecore