250 research outputs found
Genomic signatures of freshwater adaptation in Pacific herring (Clupea pallasii)
Pacific herring (Clupea pallasii) is an essential target of commercial fishing in the North Pacific Ocean. Previous studies have suggested the existence of marine and lake ecological forms of this species within its range. The lake ecological form of herring has a shortened life cycle, spending the winter and spawning in brackish waters near the shoreline without long migrations for feed-ing; it also has a relatively smaller body size than the marine form. Genetic-based studies have shown that brackish water Pacific herring not only can be distinguished as a separate lake eco-logical form but possibly has its genetic legacy. Here, as part of an ongoing study, using ddRAD-sequencing data for marine and lake ecological forms from a total of 54 individuals and methods of comparative bioinformatics, we describe genomic signatures of freshwater adaptivity in Pacific herring. In total, 253 genes containing discriminating SNPs were found, and part of those genes was organized into genome clusters, also known as “genomic islands of divergence”. Moreover, the Tajima’s D test showed that these loci are under directional selection in the lake populations of the Pacific herring. Yet, most discriminating loci between the lake and marine eco-logical forms of Pacific herring do not intersect (by gene name) with those in other known marine fish species with known freshwater/brackish populations. However, some are associated with the same physiological trait—osmoregulation.publishedVersio
The Biomarker and Therapeutic Potential of Circular Rnas in Schizophrenia
Circular RNAs (circRNAs) are endogenous, single-stranded, most frequently non-coding RNA (ncRNA) molecules that play a significant role in gene expression regulation. Circular RNAs can affect microRNA functionality, interact with RNA-binding proteins (RBPs), translate proteins by themselves, and directly or indirectly modulate gene expression during different cellular processes. The affected expression of circRNAs, as well as their targets, can trigger a cascade of events in the genetic regulatory network causing pathological conditions. Recent studies have shown that altered circular RNA expression patterns could be used as biomarkers in psychiatric diseases, including schizophrenia (SZ); moreover, circular RNAs together with other cell molecules could provide new insight into mechanisms of this disorder. In this review, we focus on the role of circular RNAs in the pathogenesis of SZ and analyze their biomarker and therapeutic potential in this disorder.publishedVersio
New insights into the human brain’s cognitive organization : Views from the top, from the bottom, from the left and, particularly, from the right
The view that the left cerebral hemisphere in humans “dominates” over the “subdominant” right hemisphere has been so deeply entrenched in neuropsychology that no amount of evidence seems able to overcome it. In this article, we examine inhibitory cause-and-effect connectivity among human brain structures related to different parts of the triune evolutionary stratification —archicortex, paleocortex and neocortex— in relation to early and late phases of a prolonged resting-state functional magnetic resonance imaging (fMRI) experiment. With respect to the evolutionarily youngest parts of the human cortex, the left and right frontopolar regions, we also provide data on the asymmetries in underlying molecular mechanisms, namely on the differential expression of the protein-coding genes and regulatory microRNA sequences. In both domains of research, our results contradict the established view by demonstrating a pronounced right-to-left vector of causation in the hemispheric interaction at multiple levels of brain organization. There may be several not mutually exclusive explanations for the evolutionary significance of this pattern of lateralization. One of the explanations emphasizes the computational advantage of separating the neural substrates for processing novel information ("exploration") mediated predominantly by the right hemisphere, and processing with reliance on established cognitive routines and representations ("exploitation") mediated predominantly by the left hemisphere.publishedVersio
The complete chloroplast genome sequence of cultivated Prunus persica cv. ‘Sovetskiy’
publishedVersio
The complete mitochondrial genome of the extinct Pleistocene horse (Equus cf. lenensis) from Kotelny Island (New Siberian Islands, Russia) and its phylogenetic assessment
The complete mitochondrial genome from the Pleistocene stallion horse (Equus cf. lenensis) which complete skull was found in 1901 on Kotelny Island (New Siberian Archipelago, Sakha Republic, Russia) is published in this paper. The mitochondrial DNA (mtDNA) is 16,584 base pairs (bp) in length and contained 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes. The overall base composition of the genome in descending order was 32.3% – A, 28.5% – C, 13.4% – G, 25.8% - T without a significant AT bias of 58.2%.publishedVersio
Molecular phylogeny of one extinct and two critically endangered Central Asian sturgeon species (genus Pseudoscaphirhynchus) based on their mitochondrial genomes
The enigmatic and poorly studied sturgeon genus Pseudoscaphirhynchus (Scaphirhynchinae: Acipenseridae) comprises three species: the Amu Darya shovelnose sturgeon (Pseudoscaphirhynchus kaufmanni (Bogdanow)), dwarf Amu Darya shovelnose sturgeon P. hermanni (Kessler), and Syr Darya shovelnose sturgeon (P. fedtschenkoi (Bogdanow). Two species – P. hermanni and P. kaufmanni – are critically endangered due to the Aral Sea area ecological disaster, caused by massive water use for irrigation to support cotton agriculture, subsequent pesticide pollution and habitat degradation. For another species – P. fedtschenkoi – no sightings have been reported since 1960-s and it is believed to be extinct, both in nature and in captivity. In this study, complete mitochondrial (mt) genomes of these three species of Pseudoscaphirhynchus were characterized using Illumina and Sanger sequencing platforms. Phylogenetic analyses showed the significant divergence between Amu Darya and Syr Darya freshwater sturgeons and supported the monophyletic origin of the Pseudoscaphirhynchus species. We confirmed that two sympatric Amu Darya species P. kaufmanni and P. hermanni form a single genetic cluster, which may require further morphological and genetic study to assess possible hybridization, intraspecific variation and taxonomic status and to develop conservation measures to protect these unique fishes.publishedVersio
Potential maternal kinship among humans from the Northern Caucasus “post-dolmen” burials
publishedVersio
Ancient DNA Reveals Maternal Philopatry of the Northeast Eurasian Brown Bear (Ursus arctos) Population during the Holocene
8 pages, 2 figures, supplementary materials https://doi.org/10.3390/genes13111961.-- Data Availability Statement: The mitochondrial genome assembly of Holocene brown bear from Bolshoy Lyakhovsky Island is available for download through the National Center for Biotechnology Information (NCBI)—OP270839. Accession numbers of previously published Ursus specimens that were implemented in this study are available in Table S2.Significant palaeoecological and paleoclimatic changes that took place during Late Pleistocene—Early Holocene transition are considered important factors that led to megafauna extinctions. Unlike many other species, the brown bear (Ursus arctos) has survived this geological time. Despite the fact that several mitochondrial DNA clades of brown bears became extinct at the end of the Pleistocene, this species is still widely distributed in Northeast Eurasia. Here, using the ancient DNA analysis of a brown bear individual that inhabited Northeast Asia in the Middle Holocene (3460 ± 40 years BP) and comparative phylogenetic analysis, we show a significant mitochondrial DNA similarity of the studied specimen with modern brown bears inhabiting Yakutia and Chukotka. In this study, we clearly demonstrate the maternal philopatry of the Northeastern Eurasian U. arctos population during the several thousand years of the HoloceneThis research was funded by Russian Scientific Foundation (RSF), grant number 22-24-00282. F.S. was partly supported by the state task of the Federal Research Center of Biotechnology RAS. The research of G.B. was conducted within the framework of the governmental scientific assignment of the Diamond and Precious Metals Geology Institute, Siberian Branch of Russian Academy of SciencesPeer reviewe
Genomic signatures of freshwater adaptation in Pacific herring (Clupea pallasii)
Pacific herring (Clupea pallasii) is an essential target of commercial fishing in the North Pacific Ocean. Previous studies have suggested the existence of marine and lake ecological forms of this species within its range. The lake ecological form of herring has a shortened life cycle, spending the winter and spawning in brackish waters near the shoreline without long migrations for feed-ing; it also has a relatively smaller body size than the marine form. Genetic-based studies have shown that brackish water Pacific herring not only can be distinguished as a separate lake eco-logical form but possibly has its genetic legacy. Here, as part of an ongoing study, using ddRAD-sequencing data for marine and lake ecological forms from a total of 54 individuals and methods of comparative bioinformatics, we describe genomic signatures of freshwater adaptivity in Pacific herring. In total, 253 genes containing discriminating SNPs were found, and part of those genes was organized into genome clusters, also known as “genomic islands of divergence”. Moreover, the Tajima’s D test showed that these loci are under directional selection in the lake populations of the Pacific herring. Yet, most discriminating loci between the lake and marine eco-logical forms of Pacific herring do not intersect (by gene name) with those in other known marine fish species with known freshwater/brackish populations. However, some are associated with the same physiological trait—osmoregulation
The Biomarker and Therapeutic Potential of Circular Rnas in Schizophrenia
Circular RNAs (circRNAs) are endogenous, single-stranded, most frequently non-coding RNA (ncRNA) molecules that play a significant role in gene expression regulation. Circular RNAs can affect microRNA functionality, interact with RNA-binding proteins (RBPs), translate proteins by themselves, and directly or indirectly modulate gene expression during different cellular processes. The affected expression of circRNAs, as well as their targets, can trigger a cascade of events in the genetic regulatory network causing pathological conditions. Recent studies have shown that altered circular RNA expression patterns could be used as biomarkers in psychiatric diseases, including schizophrenia (SZ); moreover, circular RNAs together with other cell molecules could provide new insight into mechanisms of this disorder. In this review, we focus on the role of circular RNAs in the pathogenesis of SZ and analyze their biomarker and therapeutic potential in this disorder
- …