104 research outputs found

    Dose-dependent von Willebrand Factor inhibition by aptamer BB-031 correlates with thrombolysis in a microfluidic model of arterial occlusion

    Get PDF
    Von Willebrand Factor (VWF) plays a critical role in thrombus formation, stabilization, and propagation. Previous studies have demonstrated that targeted inhibition of VWF induces thrombolysis when administered in vivo in animal models of ischemic stroke. The study objective was to quantify dose-dependent inhibition of VWF-platelet function and its relationship with thrombolysis using BB-031, an aptamer that binds VWF and inhibits its function. VWF:Ac, VWF:RCo, T-TAS, and ristocetin-induced impedance aggregometry were used to assess BB-031-mediated inhibition of VWF. Reductions in original thrombus surface area and new deposition during administration of treatment were measured in a microfluidic model of arterial thrombolysis. Rotational thromboelastometry was used to assess changes in hemostasis. BB-031 induced maximal inhibition at the highest dose (3384 nM) in VWF:Ac, and demonstrated dose-dependent responses in all other assays. BB-031, but not vehicle, induced recanalization in the microfluidic model. Maximal lytic efficacy in the microfluidic model was seen at 1692 nM and not 3384 nM BB-031 when assessed by surface area. Minor changes in ROTEM parameters were seen at 3384 nM BB-031. Targeted VWF inhibition by BB-031 results in clinically measurable impairment of VWF function, and specifically VWF-GPIb function as measured by VWF:Ac. BB-031 also induced thrombolysis as measured in a microfluidic model of occlusion and reperfusion. Moderate correlation between inhibition and lysis was observed. Additional studies are required to further examine off-target effects of BB-031 at high doses, however, these are expected to be above the range of clinical targeted dosing

    Non-linear analysis of two-layer timber beams considering interlayer slip and uplift

    Get PDF
    A new mathematical model and its finite element formulation for the non-linear analysis of mechanical behaviour of a two-layer timber planar beam is presented. A modified principle of virtual work is employed in formulating the finite element method. The basic unknowns are strains. The following assumptions are adopted in the mathematical model: materials are taken to be non-linear and can differ from layer to layer; interacting shear and normal contact tractions between layers are derived from the non-linear shear contact traction-slip and the non-linear normal contact traction-uplift characteristics of the connectors; the geometrically linear and materially non-linear Bernoulli's beam theory is assumed for each layer. The formulation is found to be accurate, reliable and computationally effective. The suitability of the theory is validated by the comparison of the numerical solution and the experimental results of full-scale laboratory tests on a simply supported beam. An excellent agreement between measured and calculated results is observed for all load levels. The further objective of the paper is the analysis of the effect of different normal contact traction-uplift constitutive relationships on the kinematic and static quantities in a statically determined and undetermined structure. While the shear contact traction-slip constitutive relationship dictates the deformability of the composite beam and has a substantial influence on most of the static and kinematic quantities of the composite beam, a variable normal contact traction-uplift constitutive relationship is in most cases negligible

    L-Ornithine-L-Aspartate and Intermittent Renal Replacement Therapy in Fulminant Hepatitis A

    Get PDF
    Hepatitis A is a common viral infection worldwide that is transmitted via the fecal-oral route. Since the introduction of an efficient vaccine, the incidence of infection has decreased but the number of cases has risen due to widespread community outbreaks among unimmunized individuals. Classic symptoms include fever, malaise, dark urine, and jaundice, and are more common in older children and adults. People are often most infectious 14 days prior to and 7 days following the onset of jaundice. We will discuss the case of a young male patient, diagnosed with acute hepatitis A, leading to fulminant hepatitis refractory to conventional therapy and the development of subsequent kidney injury. The medical treatment through the course of hospitalization was challenging and included the use of L-ornithine-L-aspartate and prolonged intermittent hemodialysis, leading to a remarkable outcome. Hepatitis A is usually self-limited and vaccine-preventable; supportive care is often sufficient for treatment, and chronic infection or chronic liver disease rarely develops. However, fulminant hepatitis, although rare, can be very challenging to manage as in the case of our patient

    M19 Modulates Skeletal Muscle Differentiation and Insulin Secretion in Pancreatic β-Cells through Modulation of Respiratory Chain Activity

    Get PDF
    Mitochondrial dysfunction due to nuclear or mitochondrial DNA alterations contributes to multiple diseases such as metabolic myopathies, neurodegenerative disorders, diabetes and cancer. Nevertheless, to date, only half of the estimated 1,500 mitochondrial proteins has been identified, and the function of most of these proteins remains to be determined. Here, we characterize the function of M19, a novel mitochondrial nucleoid protein, in muscle and pancreatic β-cells. We have identified a 13-long amino acid sequence located at the N-terminus of M19 that targets the protein to mitochondria. Furthermore, using RNA interference and over-expression strategies, we demonstrate that M19 modulates mitochondrial oxygen consumption and ATP production, and could therefore regulate the respiratory chain activity. In an effort to determine whether M19 could play a role in the regulation of various cell activities, we show that this nucleoid protein, probably through its modulation of mitochondrial ATP production, acts on late muscle differentiation in myogenic C2C12 cells, and plays a permissive role on insulin secretion under basal glucose conditions in INS-1 pancreatic β-cells. Our results are therefore establishing a functional link between a mitochondrial nucleoid protein and the modulation of respiratory chain activities leading to the regulation of major cellular processes such as myogenesis and insulin secretion

    Lateral opening in the intact β-barrel assembly machinery captured by cryo-EM

    Get PDF
    The β-barrel assembly machinery (BAM) is a ~203 kDa complex of five proteins (BamA-E) which is essential for viability in E. coli. BAM promotes the folding and insertion of β-barrel proteins into the outer membrane via a poorly understood mechanism. Several current models suggest that BAM functions through a ‘lateral gating’ motion of the β-barrel of BamA. Here we present a cryo-EM structure of the BamABCDE complex, at 4.9 Å resolution. The structure is in a laterally open conformation showing that gating is independent of BamB binding. We describe conformational changes throughout the complex, and interactions between BamA, B, D, and E and the detergent micelle that suggest communication between BAM and the lipid bilayer. Finally, using an enhanced reconstitution protocol and functional assays, we show that for the outer membrane protein OmpT, efficient folding in vitro requires lateral gating in BAM

    Outer membrane protein folding from an energy landscape perspective

    Get PDF
    The cell envelope is essential for the survival of Gram-negative bacteria. This specialised membrane is densely packed with outer membrane proteins (OMPs), which perform a variety of functions. How OMPs fold into this crowded environment remains an open question. Here, we review current knowledge about OFMP folding mechanisms in vitro and discuss how the need to fold to a stable native state has shaped their folding energy landscapes. We also highlight the role of chaperones and the β-barrel assembly machinery (BAM) in assisting OMP folding in vivo and discuss proposed mechanisms by which this fascinating machinery may catalyse OMP folding

    Dose-Dependent Von Willebrand Factor Inhibition by Aptamer BB-031 Correlates with Thrombolysis in a Microfluidic Model of Arterial Occlusion

    No full text
    Von Willebrand Factor (VWF) plays a critical role in thrombus formation, stabilization, and propagation. Previous studies have demonstrated that targeted inhibition of VWF induces thrombolysis when administered in vivo in animal models of ischemic stroke. The study objective was to quantify dose-dependent inhibition of VWF-platelet function and its relationship with thrombolysis using BB-031, an aptamer that binds VWF and inhibits its function. VWF:Ac, VWF:RCo, T-TAS, and ristocetin-induced impedance aggregometry were used to assess BB-031-mediated inhibition of VWF. Reductions in original thrombus surface area and new deposition during administration of treatment were measured in a microfluidic model of arterial thrombolysis. Rotational thromboelastometry was used to assess changes in hemostasis. BB-031 induced maximal inhibition at the highest dose (3384 nM) in VWF:Ac, and demonstrated dose-dependent responses in all other assays. BB-031, but not vehicle, induced recanalization in the microfluidic model. Maximal lytic efficacy in the microfluidic model was seen at 1692 nM and not 3384 nM BB-031 when assessed by surface area. Minor changes in ROTEM parameters were seen at 3384 nM BB-031. Targeted VWF inhibition by BB-031 results in clinically measurable impairment of VWF function, and specifically VWF-GPIb function as measured by VWF:Ac. BB-031 also induced thrombolysis as measured in a microfluidic model of occlusion and reperfusion. Moderate correlation between inhibition and lysis was observed. Additional studies are required to further examine off-target effects of BB-031 at high doses, however, these are expected to be above the range of clinical targeted dosing
    • …
    corecore