13 research outputs found

    Experimental and Modeling Studies on the Conversion of Inulin to 5-Hydroxymethylfurfural Using Metal Salts in Water

    Get PDF
    Inulin, a plant polysaccharide consisting of mainly d-fructose units, is considered an interesting feed for 5-hydroxymethylfurfural (HMF), a top 12 bio-based chemical. We here report an exploratory experimental study on the use of a wide range of homogeneous metal salts as catalysts for the conversion of inulin to HMF in water. Best results were obtained using CuCl2. Activity-pH relations indicate that the catalyst activity of CuCl2 is likely related to Lewis acidity and not to Brönsted acidity. The effects of process conditions on HMF yield for CuCl2 were systematically investigated and quantified using a central composite design (160–180 °C, an inulin loading between 0.05 and 0.15 g/mL, CuCl2 concentration in range of 0.005–0.015 M, and a reaction time between 10 and 120 min). The highest experimental HMF yield in the process window was 30.3 wt. % (39 mol %, 180 °C, 0.05 g/mL inulin, 0.005 M CuCl2 and a reaction time of 10 min). The HMF yields were modelled using non-linear, multi variable regression and good agreement between experimental data and model were obtained

    Studi Kondisi Operasi dalam Pemisahan Asam Laktat dari Produk Konversi Katalitik Tandan Kosong Sawit Melalui Esterifikasi-Hidrolisis

    Get PDF
    Lactic acid is a platform chemical that is usually used to form various chemical products. Nowadays, the need of lactic acid is increasingly high especially for bio-based chemical as a substitute for petroleum-based one. Catalytic chemical conversion is seemingly potential to substitute the bioconversion pathway. This research aims to determine the best operating condition for separating lactic acid from its mixture (the catalytic conversion product of oil palm empty fruit bunch) by esterification-hydrolysis in order to produce the highest yield and purity. The esterification of the mixture was carried out by using n-butanol as a solvent and wet Amberlyst-15 as a catalyst. The esterification process was conducted by reacting n-butanol and lactic acid for 6 hours in a batch reactor. Hydrolysis was then followed by reacting organic phase as an esterification product and water in batch reactor system for 4 hours. The result showed that the higher reactant volume ratio, temperature, and catalyst concentration were used, the higher yield of both esterification and hydrolysis products would be. The highest esterification yield of 98.64%-w/w was achieved when the temperature was at 90oC, with a reactant volume ratio of 4, and the catalyst concentration of 2.5%-w/w. Moreover, the experiment results showed that the highest hydrolysis yield of 98.64%-w/w was achieved by the temperature of 90 oC, the reactant volume ratio of 20, and the catalyst concentration of 2.5%-w/w. It was revealed that the most significant variable for esterification was reactant volume ratio while both reactant volume ratio and temperature become the prominent variables for hydrolysis counterpart. Additionally, another modified method of separation was conducted by applying reactive distillation. This modified process increased the hydrolysis yield up to 82.34%-w/w by using pure butyl lactate as feed while the usage of the catalytic butyl lactate as feed could produce lactic acid with the yield of 74.01%-w/w. A B S T R A KAsam laktat adalah bahan kimia antara yang bermanfaat untuk pembentukan berbagai macam produk kimia. Permintaan asam laktat dewasa ini sangat tinggi terutama sebagai bahan kimia berbasis alam yang digunakan sebagai substitusi untuk penggunaan bahan kimia tak terbarukan. Terdapat banyak alternatif proses yang sudah dilakukan oleh peneliti untuk menemukan metode alternatif yang efektif sebagai pengganti proses fermentasi dan konversi katalitik merupakan proses yang berpotensi untuk diaplikasikan. Penelitian ini bertujuan untuk menentukan kondisi operasi yang menghasilkan perolehan asam laktat tinggi pada reaksi esterifikasi-hidrolisis asam laktat dari produk reaksi katalitik tandan kosong sawit menggunakan n-butanol p.a., dan katalis Amberlyst-15 basah. Esterifikasi dilakukan dengan mereaksikan n-butanol dan umpan hasil konversi katalitik tandan kosong sawit selama 6 jam. Hidrolisis dilakukan dengan mereaksikan air dan fase organik esterifikasi selama 4 jam. Hasil menunjukkan semakin tinggi temperatur reaksi, rasio volume reaktan, dan konsentrasi katalis, semakin tinggi perolehan asam laktat esterifikasi dan hidrolisis yang dihasilkan. Perolehan butil laktat tertinggi pada reaksi esterifikasi diperoleh sebesar 98,64%-b/b pada kondisi 90 oC, rasio volume 4 dan konsentrasi katalis 2,5%-b/b. Perolehan asam laktat tertinggi pada reaksi hidrolisis diperoleh sebesar 67,97%-b/b pada kondisi 90 oC, rasio volume 20 dan konsentrasi katalis 2,5%-b/b. Variabel signifikan pada esterifikasi adalah rasio volume reaktan, sedangkan pada hidrolisis adalah rasio volume reaktan dan temperatur. Penggunaan distilasi reaktif pada hidrolisis mampu meningkatkan perolehan asam laktat hingga 82,34%-b/b untuk butil laktat murni sebagai umpan dan 74,01%-b/b untuk butil laktat katalitik sebagai umpan

    Platform chemicals from biomass

    No full text
    Hoogwaardige chemicaliën uit houtafval De ontwikkeling van nieuwe routes voor (bulk)chemicaliën uit biomassa is van groot belang voor toekomstige biobased societies. In dit proefschrift worden katalytische routes beschreven voor platformchemicaliën uit de suikerfractie van lignocellulosische biomassa en isolatiemethoden om platformmoleculen uit waterige pyrolyse-oliestromen te isoleren. We hebben gevonden dat metaalzouten unieke katalysatoren zijn voor de omzetting van suikers in interessante platformchemicaliën. Voorbeelden zijn de omzetting van trioses als glyceraldehyde naar melkzuur, een startmateriaal voor de productie van polymelkzuur, en de omzetting van glucose naar 5-hydroxymethylfurfural. Daarnaast is de omzetting van laagwaardige bijproducten van suikerconversies (humines) naar interessante hoogwaardigere producten bestudeerd

    Catalytic conversion of glycerol to formic acid under mild condition over an iron-based catalytic system

    No full text
    Glycerol, produced in large amounts as the main by-product of biodiesel production from biomass, has great potential to be converted into formic acid which is a potential hydrogen carrier. This research aims to evaluate the performance of an iron-based catalytic system in the oxidation process of glycerol to formic acid. The methods used include preparing an iron (II) oxalate catalyst, determining the reaction medium and reaction time for glycerol oxidation, optimizing the conditions of the glycerol oxidation process, and analysing the glycerol oxidation products. Optimization of process conditions includes the influence of temperature, substrate/catalyst molar ratio, and oxidant/substrate molar ratio. The research showed that water was a better reaction medium for glycerol oxidation, with a reaction time of 240 minutes. Oxidation of glycerol with an iron (II) oxalate catalyst can produce formic acid products with the best results obtained at pH 5, temperature 50°C, substrate/catalyst molar ratio of 100, and oxidant/substrate molar ratio of four with 83.18% converted glycerol. The yield and selectivity of formic acid were 47.77% and 57.43% respectively. These results indicate that the iron-based catalytic system has the potential to be an effective catalytic system for glycerol oxidation under mild conditions

    Produksi Asam Laktat Melalui Jalur Biologi dan Jalur Kimia Katalitik Menggunakan Berbagai Bahan Baku

    Get PDF
    Aplikasi asam laktat pada berbagai industri menarik minat para peneliti untuk memproduksi asam laktat melalui berbagai jalur reaksi. Perolehan isomer asam lakat yang lebih murni dibandingkan dengan jalur reaksi kimia katalitik menjadikan jalur biologi dengan fermentasi menjadi jalur reaksi yang banyak dipakai di industri. Berbagai mikroorganisme pada golongan Lactic Acid Bacteria telah digunakan untuk memproduksi asam laktat baik dalam skala laboratorium maupun skala industri. Berbagai bahan baku dapat dikonversi menjadi asam laktat seperti, dihidroksi aseton, gliseraldehid, piruvaldehid, xilosa, glukosa, fruktosa, sukrosa, selulosa, insulin, selobiosa, pati, levoglukosan dan lignoselulosa. Kemampuan katalis dalam metode kimiawi menarik banyak minat peneliti untuk mencari alternatif pembuatan asam laktat yang bisa mengkonversi gula menjadi asam laktat dengan waktu reaksi yang lebih singkat. Penggunaan berbagai katalis mulai dari katalis homogen dan heterogen terbukti dapat menghasilkan asam laktat dengan yield yang bervariasi. Katalis lanthanum triflate terlihat menghasilkan asam laktat dengan perolehan yang baik walaupun dari bahan baku lignoselulosa yang perlu perlakuan awal terlebih dahulu karena mempunyai senyawa lignin yang bisa menghalangi kerja katalis.Kata Kunci: asam laktat; kimia katalitik; fermentasi; lignoselulosa  ABSTRACT: The utilization of lactic acid for various applications encourages researchers to produce lactic acid by various reaction pathways. The yield of lactic acid isomer which is purer than the catalytic chemical reaction makes the biological pathway by fermentation widely used in industry. Various microorganisms in the Lactic Acid Bacteria categories have been used to produce lactic acid both on a laboratory and industrial scale. Various raw materials can be converted into lactic acid such as dihydroxy acetone, glyceraldehyde, pyruvaldehyde, xylose, glucose, fructose, sucrose, cellulose, insulin, cellobiose, starch, levoglucosan and lignocellulose. The ability of catalyst has attracted interest of researcher to find alternatives for making lactic acid that can convert sugar into lactic acid with a shorter reaction time. The use of various catalysts from homogeneous and heterogeneous catalysts has been proven to produce lactic acid with varying results. The lanthanum triflate catalyst proven to produce lactic acid with a high yield, even though it is from lignocellulosic raw materials that need pre-treatment to remove lignin compounds which can inhibit the performance of the catalyst.Keywords: lactic acid; chemical catalytic; fermentation;  lignocellulose 

    Production of Lactic Acid from Empty Fruit Bunch of Palm Oil Using Catalyst of Barium Hydroxide

    No full text
    Lactic Acid as a platform chemical has broad application in various industries, especially in the production of Poly Lactic Acid (PLA) for biodegradable plastic. Empty fruit bunch (EFB), abundant by product from palm oil mill industry, is one of potential feedstock to be used in the production of lactic acid from lignocellulose biomass. EFB contains high cellulose and hemicellulose about 37– 59.7% w/w and 16–28% w/w, respectively. The aim of this paper is to study the effects of the operating conditions, such as temperature, reaction time, biomass loading, and catalyst concentration on the yield of lactic acid using barium hydroxide as alkaline catalyst. EFB pretreatment with steam explosion was applied to remove lignin content. The results showed that pretreatment reduced the lignin content from 22.66% to 9.69% w/w. Meanwhile, hemicellulose and cellulose increased from 14.40% to 16.40% w/w and 29.37% to 63.57% w/w, respectively. The highest yield of lactic acid was 21.57% C-mol, achieved by using 0.25 M Ba(OH)2 as the catalyst, with 5% w/v biomass loading, temperature 240°C, during 4 h reaction times. The yield was approximately equal to yield of lactic acid (~ 20%) compared with Pb2+ as the catalyst for EFB conversion although the later catalyst produced fewer by products during conversion

    Production of Lactic Acid from Empty Fruit Bunch of Palm Oil Using Catalyst of Barium Hydroxide

    No full text
    Lactic Acid as a platform chemical has broad application in various industries, especially in the production of Poly Lactic Acid (PLA) for biodegradable plastic. Empty fruit bunch (EFB), abundant by product from palm oil mill industry, is one of potential feedstock to be used in the production of lactic acid from lignocellulose biomass. EFB contains high cellulose and hemicellulose about 37– 59.7% w/w and 16–28% w/w, respectively. The aim of this paper is to study the effects of the operating conditions, such as temperature, reaction time, biomass loading, and catalyst concentration on the yield of lactic acid using barium hydroxide as alkaline catalyst. EFB pretreatment with steam explosion was applied to remove lignin content. The results showed that pretreatment reduced the lignin content from 22.66% to 9.69% w/w. Meanwhile, hemicellulose and cellulose increased from 14.40% to 16.40% w/w and 29.37% to 63.57% w/w, respectively. The highest yield of lactic acid was 21.57% C-mol, achieved by using 0.25 M Ba(OH)2 as the catalyst, with 5% w/v biomass loading, temperature 240°C, during 4 h reaction times. The yield was approximately equal to yield of lactic acid (~ 20%) compared with Pb2+ as the catalyst for EFB conversion although the later catalyst produced fewer by products during conversion
    corecore