125 research outputs found

    News in the classification of WHO 2022 bladder tumors

    Get PDF
    The fifth-edition of World Health Organization (WHO) Classification of Tumors series for urinary and male genital tract tumors has been published, six years later the fourth-edition. In these years, new treatment approaches have been implemented and new molecular data on urological cancers are known. Morphology remains the groundwork for taxonomy of the urinary tract tumors. However, a molecular approach to classification of urothelial carcinomas and the management of selected neoplasms with new therapeutic modalities such as immunotherapy are emerging. More data are needed for the application of these advances in routine pathology practice and patient management. The 2022 World Health Organization (WHO) Classification of Tumors of the Urinary System and Male Genital Organs represents an update in classification on urinary tract tumors. It also offers new insights with regards to the grading of heterogeneous non-invasive urothelial neoplasms, the definition of inverted neoplasms, the grading of invasive urothelial carcinomas, the diversity of morphological appearance of urothelial carcinomas, the definition of precursor lesions and the lineage of differentiation of the tumors

    Use of fresh-frozen plasma in 2012 at the Fondazione Ca' Granda Hospital of Milan : assessment of appropriateness using record linkage techniques applied to data routinely recorded in various hospital information systems

    Get PDF
    Background. The Quality Unit of a research and teaching hospital in Milan assessed the increased clinical use of fresh-frozen plasma in patients treated during 2012 in order to evaluate the appropriateness of this use. Materials and methods. For each patient in the study, a pathology profile was generated by means of record linkage techniques involving data collected through different information systems. Patients' information was combined using the patient identifier key generating pathology profiles exported to an Excel file. The profiles were reviewed by two haematologists who identified 101 potentially inappropriate treatments for which the medical records had to be reviewed manually. Results. In 2012, 490 patients were transfused and for 473 cases the automatic record linkage provided a complete profile. The information relating to the remaining patients did not match, mainly because the patients underwent outpatient procedures for which clinical information is not automatically recorded. In the overall audit only 13 treatments were judged inappropriate. Discussion. Our study supports the view that record linkage techniques applied to data routinely recorded in different hospital information systems could be potentially extended to support clinical audits, enabling the generation of automated patient profiles that can be easily evaluated, relegating manual checks on medical records to doubtful cases only. Moreover, the method applied in this study allows the analysis of a full set of cases instead of sample surveys, increasing the robustness of the audit results

    The SPARC Water Vapor Assessment II: assessment of satellite measurements of upper tropospheric humidity

    Get PDF
    Nineteen limb-viewing data sets (occultation, passive thermal, and UV scattering) and two nadir upper tropospheric humidity (UTH) data sets are intercompared and also compared to frost-point hygrometer balloon sondes. The upper troposphere considered here covers the pressure range from 300-100 hPa. UTH is a challenging measurement, because concentrations vary between 2-1000 ppmv (parts per million by volume), with sharp changes in vertical gradients near the tropopause. Cloudiness in this region also makes the measurement challenging. The atmospheric temperature is also highly variable ranging from 180-250 K. The assessment of satellite-measured UTH is based on coincident comparisons with balloon frost-point hygrometer sondes, multi-month mapped comparisons, zonal mean time series comparisons, and coincident satellite-to-satellite comparisons. While the satellite fields show similar features in maps and time series, quantitatively they can differ by a factor of 2 in concentration, with strong dependencies on the amount of UTH. Additionally, time-lag response-corrected Vaisala RS92 radiosondes are compared to satellites and the frost-point hygrometer measurements. In summary, most satellite data sets reviewed here show on average similar to 30 % agreement amongst themselves and frost-point data but with an additional similar to 30 % variability about the mean bias. The Vaisala RS92 sonde, even with a time-lag correction, shows poor behavior for pressures less than 200 hPa

    The SPARC Water Vapor Assessment II: assessment of satellite measurements of upper tropospheric humidity

    Get PDF
    Nineteen limb-viewing data sets (occultation, passive thermal, and UV scattering) and two nadir upper tropospheric humidity (UTH) data sets are intercompared and also compared to frost-point hygrometer balloon sondes. The upper troposphere considered here covers the pressure range from 300–100 hPa. UTH is a challenging measurement, because concentrations vary between 2–1000 ppmv (parts per million by volume), with sharp changes in vertical gradients near the tropopause. Cloudiness in this region also makes the measurement challenging. The atmospheric temperature is also highly variable ranging from 180–250 K. The assessment of satellite-measured UTH is based on coincident comparisons with balloon frost-point hygrometer sondes, multi-month mapped comparisons, zonal mean time series comparisons, and coincident satellite-to-satellite comparisons. While the satellite fields show similar features in maps and time series, quantitatively they can differ by a factor of 2 in concentration, with strong dependencies on the amount of UTH. Additionally, time-lag response-corrected Vaisala RS92 radiosondes are compared to satellites and the frost-point hygrometer measurements. In summary, most satellite data sets reviewed here show on average ∼30 % agreement amongst themselves and frost-point data but with an additional ∼30 % variability about the mean bias. The Vaisala RS92 sonde, even with a time-lag correction, shows poor behavior for pressures less than 200 hPa

    The SPARC water vapour assessment II: comparison of annual, semi-annual and quasi-biennial variations in stratospheric and lower mesospheric water vapour observed from satellites

    Get PDF
    In the framework of the second SPARC (Stratosphere-troposphere Processes And their Role in Climate) water vapour assessment (WAVAS-II), the amplitudes and phases of the annual, semi-annual and quasi-biennial variation in stratospheric and lower mesospheric water were compared using 30 data sets from 13 different satellite instruments. These comparisons aimed to provide a comprehensive overview of the typical uncertainties in the observational database which can be considered in subsequent observational and modelling studies. For the amplitudes, a good agreement of their latitude and altitude distribution was found. Quantitatively there were differences in particular at high latitudes, close to the tropopause and in the lower mesosphere. In these regions, the standard deviation over all data sets typically exceeded 0.2 ppmv for the annual variation and 0.1 ppmv for the semi-annual and quasi-biennial variation. For the phase, larger differences between the data sets were found in the lower mesosphere. Generally the smallest phase uncertainties can be observed in regions where the amplitude of the variability is large. The standard deviations of the phases for all data sets were typically smaller than a month for the annual and semi-annual variation and smaller than 5 months for the quasi-biennial variation. The amplitude and phase differences among the data sets are caused by a combination of factors. In general, differences in the temporal variation of systematic errors and in the observational sampling play a dominant role. In addition, differences in the vertical resolution of the data, the considered time periods and influences of clouds, aerosols as well as non-local thermodynamic equilibrium (NLTE) effects cause differences between the individual data sets

    The SPARC water vapour assessment II: comparison of stratospheric and lower mesospheric water vapour time series observed from satellites

    Get PDF
    Time series of stratospheric and lower mesospheric water vapour using 33 data sets from 15 different satellite instruments were compared in the framework of the second SPARC (Stratosphere-troposphere Processes And their Role in Climate) water vapour assessment (WAVAS-II). This comparison aimed to provide a comprehensive overview of the typical uncertainties in the observational database that can be considered in the future in observational and modelling studies, e.g addressing stratospheric water vapour trends. The time series comparisons are presented for the three latitude bands, the Antarctic (80°–70°S), the tropics (15°S–15°N) and the Northern Hemisphere mid-latitudes (50°–60°N) at four different altitudes (0.1, 3, 10 and 80hPa) covering the stratosphere and lower mesosphere. The combined temporal coverage of observations from the 15 satellite instruments allowed the consideration of the time period 1986–2014. In addition to the qualitative comparison of the time series, the agreement of the data sets is assessed quantitatively in the form of the spread (i.e. the difference between the maximum and minimum volume mixing ratios among the data sets), the (Pearson) correlation coefficient and the drift (i.e. linear changes of the difference between time series over time). Generally, good agreement between the time series was found in the middle stratosphere while larger differences were found in the lower mesosphere and near the tropopause. Concerning the latitude bands, the largest differences were found in the Antarctic while the best agreement was found for the tropics. From our assessment we find that most data sets can be considered in future observational and modelling studies, e.g. addressing stratospheric and lower mesospheric water vapour variability and trends, if data set specific characteristics (e.g. drift) and restrictions (e.g. temporal and spatial coverage) are taken into account

    The SPARC water vapour assessment II: biases and drifts of water vapour satellite data records with respect to frost point hygrometer records

    Get PDF
    Satellite data records of stratospheric water vapour have been compared to balloon-borne frost point hygrometer (FP) profiles that are coincident in space and time. The satellite data records of 15 different instruments cover water vapour data available from January 2000 through December 2016. The hygrometer data are from 27 stations all over the world in the same period. For the comparison, real or constructed averaging kernels have been applied to the hygrometer profiles to adjust them to the measurement characteristics of the satellite instruments. For bias evaluation, we have compared satellite profiles averaged over the available temporal coverage to the means of coincident FP profiles for individual stations. For drift determinations, we analysed time series of relative differences between spatiotemporally coincident satellite and hygrometer profiles at individual stations. In a synopsis we have also calculated the mean biases and drifts (and their respective uncertainties) for each satellite record over all applicable hygrometer stations in three altitude ranges (10–30 hPa, 30–100 hPa, and 100 hPa to tropopause). Most of the satellite data have biases <10 % and average drifts <1 % yr−1 in at least one of the respective altitude ranges. Virtually all biases are significant in the sense that their uncertainty range in terms of twice the standard error of the mean does not include zero. Statistically significant drifts (95 % confidence) are detected for 35 % of the ≈ 1200 time series of relative differences between satellites and hygrometers
    • …
    corecore