17 research outputs found

    Heletz experimental site overview, characterization and data analysis for CO2 injection and geological storage

    Get PDF
    International audienceThis paper provides an overview of the site characterization work at the Heletz site, in preparation to scientifically motivated CO2 injection experiments. The outcomes are geological and hydrogeological models with associated medium properties and baseline conditions. The work has consisted on first re-analyzing the existing data base from ∌40 wells from the previous oil exploration studies, based on which a 3-dimensional structural model was constructed along with first estimates of the properties. The CO2 injection site is located on the saline edges of the Heletz depleted oil field. Two new deep (>1600 m) wells were drilled within the injection site and from these wells a detailed characterization program was carried out, including coring, core analyses, fluid sampling, geophysical logging, seismic survey, in situ hydraulic testing and measurement of the baseline pressure and temperature. The results are presented and discussed in terms of characteristics of the reservoir and cap-rock, the mineralogy, water composition and other baseline conditions, porosity, permeability, capillary pressure and relative permeability. Special emphasis is given to petrophysical properties of the reservoir and the seal, such as comparing the estimates determined by different methods, looking at their geostatistical distributions as well as changes in them when exposed to CO2

    Mesenchymal Stromal Cells Engage Complement and Complement Receptor Bearing Innate Effector Cells to Modulate Immune Responses

    Get PDF
    Infusion of human third-party mesenchymal stromal cells (MSCs) appears to be a promising therapy for acute graft-versus-host disease (aGvHD). To date, little is known about how MSCs interact with the body's innate immune system after clinical infusion. This study shows, that exposure of MSCs to blood type ABO-matched human blood activates the complement system, which triggers complement-mediated lymphoid and myeloid effector cell activation in blood. We found deposition of complement component C3-derived fragments iC3b and C3dg on MSCs and fluid-phase generation of the chemotactic anaphylatoxins C3a and C5a. MSCs bound low amounts of immunoglobulins and lacked expression of complement regulatory proteins MCP (CD46) and DAF (CD55), but were protected from complement lysis via expression of protectin (CD59). Cell-surface-opsonization and anaphylatoxin-formation triggered complement receptor 3 (CD11b/CD18)-mediated effector cell activation in blood. The complement-activating properties of individual MSCs were furthermore correlated with their potency to inhibit PBMC-proliferation in vitro, and both effector cell activation and the immunosuppressive effect could be blocked either by using complement inhibitor Compstatin or by depletion of CD14/CD11b-high myeloid effector cells from mixed lymphocyte reactions. Our study demonstrates for the first time a major role of the complement system in governing the immunomodulatory activity of MSCs and elucidates how complement activation mediates the interaction with other immune cells

    NAPL spill modeling and simulation of pumping remediation : NAPL modellering och simulering av pumpning

    No full text
    This Master Thesis presents TMVOC simulations of a NAPL-spill (non-aqueous phase liquid) and following pumping remediation. TMVOC is a simulation program for three-phase non-isothermal multicomponent flow in saturated-unsaturated heterogeneous media. The models presented are based on an actual remediation project. The aim of the thesis was to study if the historical development of the NAPL-spill could be simulated and how long time the pumping remediation would take. A 3D-model and a radially symmetric cylindrical model were created. A large effort of the work done was in taking the complex TMVOC model in use and modifying it for the problem at hand. Therefore, the numerical results of the simulations should be considered as preliminary and as forming basis for future studies. The results from the spill simulation and historical pumping simulation indicated that the spill volume could be less than the estimated 1400 m3, perhaps around 700 m3, assuming a leakage time of 30 years. The historical pumping simulation of a 700 m3 diesel spill showed good agreement with measured values for some wells, but overestimated the recovery in other wells. The overestimation could be due to the fact that the 3D-model did not take seasonal changes in the groundwater level into consideration. Also, the model did not account for any heterogeneity or compartmentalization in soil material properties that could explain the differences between the wells.  Assuming the same spill of 700 m3, future pumping was simulated. The results from these simulations indicated the remediation time to be long due to fast decreasing mobility of the NAPL phase. The NAPL flow rate to the wells was halved in a couple of years. Much of the NAPL was distributed over a large area at near residual saturation with the highest NAPL saturation found at the opposite side of the pumping wells in the model.   Future simulation studies should address the effect of discretization as well as the effect of uncertainties in material properties e.g. conductivity, residual NAPL saturation and soil heterogeneity

    Modeling of geohydrological processes in geological CO2 storage – with focus on residual trapping

    No full text
    Geological storage of carbon dioxide (CO2) in deep saline aquifers is one approach to mitigate release from large point sources to the atmosphere. Understanding of in-situ processes providing trapping is important to the development of realistic models and the planning of future storage projects. This thesis covers both field- and pore-scale numerical modeling studies of such geohydrological processes, with focus on residual trapping. The setting is a CO2-injection experiment at the Heletz test site, conducted within the frame of the EU FP7 MUSTANG and TRUST projects. The objectives of the thesis are to develop and analyze alternative experimental characterization test sequences for determining in-situ residual CO2 saturation (Sgr), as well as to analyze the impact of the injection strategy on trapping, the effect of model assumptions (coupled wellbore-reservoir flow, geological heterogeneity, trapping model) on the predicted trapping, and to develop a pore-network model (PNM) for simulating and analyzing pore-scale mechanisms. The results include a comparison of alternative characterization test sequences for estimating Sgr. The estimates were retrieved through parameter estimation. The effect on the estimate of including various data sets was determined. A new method, using withdrawal and an indicator-tracer, for obtaining a residual zone in-situ was also introduced. Simulations were made of the CO2 partitioning between layers in a multi-layered formation, and parameters influencing this were identified. The results showed the importance of accounting for coupled wellbore-reservoir flow in simulations of such scenarios. Simulations also showed that adding chase-fluid stages after a conventional CO2 injection enhances the (residual and dissolution) trapping. Including geological heterogeneity generally decreased the estimated trapping. The choice of trapping model may largely effect the quantity of the predicted residual trapping (although most of them produced similar results). The use of an appropriate trapping model and description of geological heterogeneity for a site when simulating CO2 sequestration is vital, as different assumptions may give significant discrepancies in predicted trapping. The result also includes a PNM code, for multiphase quasi-static flow and trapping in porous materials. It was used to investigate trapping and obtain an estimated trapping (IR) curve for Heletz sandstone

    Modellstudie för att undersöka Ă„tgĂ€rdersom pĂ„verkar lĂ„gflöden : – Delrapport 2 i regeringsuppdrag om Ă„tgĂ€rder för att motverkavattenbrist i ytvattentĂ€kter.

    No full text
    2018 fick SMHI i uppdrag via myndighetens regleringsbrev att genomföra en studie av Ă„tgĂ€rder för att motverka vattenbrist i ytvattentĂ€kter. Arbetet Ă€r pĂ„gĂ„ende och har genomförts i flera steg. Detta Ă€r den andra delrapporten  som tagits fram i arbetet hittills. HĂ€r presenteras resultaten frĂ„n en förstudie som genomförts med syfte att utvĂ€rdera olika Ă„tgĂ€rders effekt pĂ„ lĂ„gvattenföring och pĂ„ sĂ„ sĂ€tt utvĂ€rdera dess förmĂ„ga att förebygga vattenbrist i ytvattentĂ€kter. Syftet var att lĂ€gga grunden för uppbyggnaden av ett interaktivt verktyg dĂ€r kommuner eller verksamhetsutövare sjĂ€lva ska kunna bedöma vattentillgĂ„ngen vid specifika platser och tidpunkter utifrĂ„n uppgifter om olika vattenuttag och regleringar inom avrinningsomrĂ„det. Störst pĂ„verkan pĂ„ vattentillgĂ„ngen har vĂ€dret. Det finns dock Ă„tgĂ€rder som kan minska risken för vattenbrist i ytvattentĂ€kter. ÅtgĂ€rderna Ă€r frĂ€mst för förebyggande arbete, men vissa kan Ă€ven vara aktuella under en bristsituation. Den effektivaste Ă„tgĂ€rden för att utnyttja ett omrĂ„des vatten Ă€r att anvĂ€nda sjöar som reglermagasin för att sĂ€kra vattentillgĂ„ngen i vattentĂ€kten, men det förutsĂ€tter att det finns sjöar att reglera. I södra Sverige finns oftast en god tillgĂ„ng pĂ„ vatten vintertid medan bristsituationer förekommer under sommaren  och början av hösten. Med regleringar kan en del av vattnet frĂ„n perioder med hög tillgĂ„ng pĂ„ vatten samlas i sjöar och tappas av under perioder med lĂ„g vattentillgĂ„ng. Vattenregleringar Ă€r vanliga idag, frĂ€mst för vattenkraftĂ€ndamĂ„l, men förekommer Ă€ven för dricksvattenförsörjning. SMHI ser att detta Ă€r en aspekt som borde tas hĂ€nsyn till i omrĂ„den som riskerar vattenbrist, nu nĂ€r vattendomar omprövas i stor skala. Att utföra Ă„tgĂ€rder pĂ„ diken och andra vattendrag kan ha en lokal effekt, men ger inte tillrĂ€ckligt stor effekt för att pĂ„verka vattenflödena i större skala. Att anlĂ€gga vĂ„tmarker har ocksĂ„ frĂ€mst en lokal effekt, eftersom det krĂ€vs sĂ„ stora arealer vĂ„tmark för att ge effekt pĂ„ vattentillgĂ„ngen i ytvattentĂ€kter I omrĂ„den med stora vattenuttag pĂ„verkas lĂ„gflödet om dessa Ă€ndras. Eftersom kunskap ofta saknas om vattenuttagens storlek Ă€r det svĂ„rt att veta hur stor denna effekt blir. Det Ă€r ocksĂ„ svĂ„rt att ta fram föreskrifter som gör att begrĂ€nsningarna kan genomföras i praktiken. ÅtgĂ€rder som att införa bevattningsdammar kan ha stor potential förutsatt att de fylls pĂ„ under tid av högflöden och töms under lĂ„gflöden. Effekten blir dĂ„ att vattenuttag frĂ„n det naturliga vattendraget minskar under lĂ„gflödesperioder. Det pĂ„gĂ„ende arbetet med att motverka vattenbrist i ytvattentĂ€kter fokuserar pĂ„ att utveckla en metodik för hĂ„llbar vattenresursförvaltning. Det Ă€r tydligt att det behövs gemensamt arbete över alla sektorer med vattenresursplanering i ett avrinningsomrĂ„de. Det verktyg som nu utvecklas bidrar till att vattenresursplaneringen underlĂ€ttas och att vattenresurserna kan förvaltas pĂ„ ett lĂ„ngsiktigt hĂ„llbart sĂ€tt.In 2018 the Swedish Meteorological and Hydrological Institute, SMHI was assigned toperform a study of measures to prevent water scarcity in surface water resources. Thework is ongoing and has been performed stepwise. This is the second report produced sofar. The report presents the results from a pre-study that was performed to evaluate theeffect of different measures on low flows and their potential to prevent water scarcity insurface water resources. The aim of the model study was to build a knowledge basis fordeveloping a tool that can be used to prevent water scarcity in surface water resources.Through the tool, municipalities and other actors in the water sector will be able tosimulate water availability in a catchment area independently. The weather has the largest impact on water availability, but there are different measuresthat can prevent water scarcity in surface water resources. The measures are mostlypreventative but some can be used in scarcity situations as well. The most effective measure is to use the water storage capacity in lakes and to regulatethem wisely. Obviously, this requires that there are lakes to regulate. In the southern partsof Sweden water availability is often good in wintertime while water scarcity occursduring summertime and at the beginning of fall. Through lake regulation, water can bestored in periods with significant water availability and used in periods when water isneeded. It is common to regulate lakes for hydropower production, but some lakes areregulated for water supply as well. SMHI regards this as an important aspect to considerin areas that are in risk for water scarcity since many permissions for water regulation aregoing to be reconsidered now. Measures on ditch, drainage and other watercourses can have a local effect, but it is notlarge enough to affect the low flows on a larger scale. Restoration of wetlands has as wellmostly a local effect since very large areas are required to impact on surface waterresources on a larger scale. In areas with significant water extractions, the low flow is affected if these are changed.Often, knowledge on water extraction still is inadequate and it is difficult to exactlycalculate the effect if water extractions are changed. It is also complicated to restrictwater extractions. Measures such as establishing water ponds for irrigation might havepotential provided they are filled during periods of good water availability. The effect ofextractions will then decrease during low flow periods. The ongoing work to prevent water scarcity in surface water resources will focus ondeveloping methods for sustainable water management. It is evident that the work withwater resources planning needs to be performed mutually between sectors in a catchmentarea. The tool that will be developed within this project will contribute to that this workcan be performed in a sustainable way

    Modellstudie för att undersöka Ă„tgĂ€rdersom pĂ„verkar lĂ„gflöden : – Delrapport 2 i regeringsuppdrag om Ă„tgĂ€rder för att motverkavattenbrist i ytvattentĂ€kter.

    No full text
    2018 fick SMHI i uppdrag via myndighetens regleringsbrev att genomföra en studie av Ă„tgĂ€rder för att motverka vattenbrist i ytvattentĂ€kter. Arbetet Ă€r pĂ„gĂ„ende och har genomförts i flera steg. Detta Ă€r den andra delrapporten  som tagits fram i arbetet hittills. HĂ€r presenteras resultaten frĂ„n en förstudie som genomförts med syfte att utvĂ€rdera olika Ă„tgĂ€rders effekt pĂ„ lĂ„gvattenföring och pĂ„ sĂ„ sĂ€tt utvĂ€rdera dess förmĂ„ga att förebygga vattenbrist i ytvattentĂ€kter. Syftet var att lĂ€gga grunden för uppbyggnaden av ett interaktivt verktyg dĂ€r kommuner eller verksamhetsutövare sjĂ€lva ska kunna bedöma vattentillgĂ„ngen vid specifika platser och tidpunkter utifrĂ„n uppgifter om olika vattenuttag och regleringar inom avrinningsomrĂ„det. Störst pĂ„verkan pĂ„ vattentillgĂ„ngen har vĂ€dret. Det finns dock Ă„tgĂ€rder som kan minska risken för vattenbrist i ytvattentĂ€kter. ÅtgĂ€rderna Ă€r frĂ€mst för förebyggande arbete, men vissa kan Ă€ven vara aktuella under en bristsituation. Den effektivaste Ă„tgĂ€rden för att utnyttja ett omrĂ„des vatten Ă€r att anvĂ€nda sjöar som reglermagasin för att sĂ€kra vattentillgĂ„ngen i vattentĂ€kten, men det förutsĂ€tter att det finns sjöar att reglera. I södra Sverige finns oftast en god tillgĂ„ng pĂ„ vatten vintertid medan bristsituationer förekommer under sommaren  och början av hösten. Med regleringar kan en del av vattnet frĂ„n perioder med hög tillgĂ„ng pĂ„ vatten samlas i sjöar och tappas av under perioder med lĂ„g vattentillgĂ„ng. Vattenregleringar Ă€r vanliga idag, frĂ€mst för vattenkraftĂ€ndamĂ„l, men förekommer Ă€ven för dricksvattenförsörjning. SMHI ser att detta Ă€r en aspekt som borde tas hĂ€nsyn till i omrĂ„den som riskerar vattenbrist, nu nĂ€r vattendomar omprövas i stor skala. Att utföra Ă„tgĂ€rder pĂ„ diken och andra vattendrag kan ha en lokal effekt, men ger inte tillrĂ€ckligt stor effekt för att pĂ„verka vattenflödena i större skala. Att anlĂ€gga vĂ„tmarker har ocksĂ„ frĂ€mst en lokal effekt, eftersom det krĂ€vs sĂ„ stora arealer vĂ„tmark för att ge effekt pĂ„ vattentillgĂ„ngen i ytvattentĂ€kter I omrĂ„den med stora vattenuttag pĂ„verkas lĂ„gflödet om dessa Ă€ndras. Eftersom kunskap ofta saknas om vattenuttagens storlek Ă€r det svĂ„rt att veta hur stor denna effekt blir. Det Ă€r ocksĂ„ svĂ„rt att ta fram föreskrifter som gör att begrĂ€nsningarna kan genomföras i praktiken. ÅtgĂ€rder som att införa bevattningsdammar kan ha stor potential förutsatt att de fylls pĂ„ under tid av högflöden och töms under lĂ„gflöden. Effekten blir dĂ„ att vattenuttag frĂ„n det naturliga vattendraget minskar under lĂ„gflödesperioder. Det pĂ„gĂ„ende arbetet med att motverka vattenbrist i ytvattentĂ€kter fokuserar pĂ„ att utveckla en metodik för hĂ„llbar vattenresursförvaltning. Det Ă€r tydligt att det behövs gemensamt arbete över alla sektorer med vattenresursplanering i ett avrinningsomrĂ„de. Det verktyg som nu utvecklas bidrar till att vattenresursplaneringen underlĂ€ttas och att vattenresurserna kan förvaltas pĂ„ ett lĂ„ngsiktigt hĂ„llbart sĂ€tt.In 2018 the Swedish Meteorological and Hydrological Institute, SMHI was assigned toperform a study of measures to prevent water scarcity in surface water resources. Thework is ongoing and has been performed stepwise. This is the second report produced sofar. The report presents the results from a pre-study that was performed to evaluate theeffect of different measures on low flows and their potential to prevent water scarcity insurface water resources. The aim of the model study was to build a knowledge basis fordeveloping a tool that can be used to prevent water scarcity in surface water resources.Through the tool, municipalities and other actors in the water sector will be able tosimulate water availability in a catchment area independently. The weather has the largest impact on water availability, but there are different measuresthat can prevent water scarcity in surface water resources. The measures are mostlypreventative but some can be used in scarcity situations as well. The most effective measure is to use the water storage capacity in lakes and to regulatethem wisely. Obviously, this requires that there are lakes to regulate. In the southern partsof Sweden water availability is often good in wintertime while water scarcity occursduring summertime and at the beginning of fall. Through lake regulation, water can bestored in periods with significant water availability and used in periods when water isneeded. It is common to regulate lakes for hydropower production, but some lakes areregulated for water supply as well. SMHI regards this as an important aspect to considerin areas that are in risk for water scarcity since many permissions for water regulation aregoing to be reconsidered now. Measures on ditch, drainage and other watercourses can have a local effect, but it is notlarge enough to affect the low flows on a larger scale. Restoration of wetlands has as wellmostly a local effect since very large areas are required to impact on surface waterresources on a larger scale. In areas with significant water extractions, the low flow is affected if these are changed.Often, knowledge on water extraction still is inadequate and it is difficult to exactlycalculate the effect if water extractions are changed. It is also complicated to restrictwater extractions. Measures such as establishing water ponds for irrigation might havepotential provided they are filled during periods of good water availability. The effect ofextractions will then decrease during low flow periods. The ongoing work to prevent water scarcity in surface water resources will focus ondeveloping methods for sustainable water management. It is evident that the work withwater resources planning needs to be performed mutually between sectors in a catchmentarea. The tool that will be developed within this project will contribute to that this workcan be performed in a sustainable way

    Sveriges vattentillgĂ„ng utifrĂ„n perspektivet vattenbrist och torka : – Delrapport 1 i regeringsuppdrag om Ă„tgĂ€rder för att motverka vattenbrist i ytvattentĂ€kter.

    No full text
    Denna rapport tar upp begreppen torka och vattenbrist ur ett Svenskt perspektiv, undersöker vad som kan ge upphov till vattenbrist och ger en bild av Sveriges vattentillgĂ„ngar. Vattenbrist betyder att det finns ett större behov av rent vatten Ă€n vad som finns tillgĂ€ngligt. Bristen Ă€r dĂ€rför starkt kopplad till anvĂ€ndandet av vatten. KlimatförĂ€ndringarna gör Sverige varmare vilket pĂ„verkar tillgĂ„ngen till vatten.I genomsnitt vĂ€ntas vintrarna att bli varmare och mer nederbördsrika vilket leder till mer vatten. Varmare temperaturer innebĂ€r ocksĂ„ att avdunstningen ökar under sommarhalvĂ„ret vilket kan ge en minskad tillgĂ„ng till vatten, sĂ€rskilt i södra Sverige. KlimatförĂ€ndringarna förvĂ€ntas ocksĂ„ leda till kraftigare skyfall. Denna typ av nederbörd kan vara svĂ„rt för mark och vĂ€xter att ta tillvara men kan ge upphov till översvĂ€mningar. Mildare vintrar förĂ€ndrar förutsĂ€ttningar för snö, vilket sĂ€rskilt pĂ„verkar vattendragen i landets norra delar. Under somrarna 2016, 2017 och 2018 fick delar av Sverige uppleva problem med vattenbrist. Orsakerna till de minskade vattentillgĂ„ngarna var olika och problemen varierade över Ă„ren och mellan omrĂ„den. Delar av landet har de senaste Ă„ren fĂ„tt kĂ€nna pĂ„ effekterna av ett varmare klimat. Det har visat hur viktigt det Ă€r att vi anpassar oss för att kunna klara dessa förĂ€ndringar. Det finns mĂ„nga faktorer som pĂ„verkar tillgĂ„ngen pĂ„ vatten i ett omrĂ„de, men följande tre kategorier sammanfattar de flesta faktorer: Klimat – exempelvis nederbörd och temperatur Magasinerande förmĂ„ga – hur mycket vatten omrĂ„det kan mellanlagra VattenanvĂ€ndning – hur mycket vatten som anvĂ€nds Som land har Sverige god tillgĂ„ng till sötvatten. Vattenbrist kan Ă€ndĂ„ uppstĂ„. Lokalt ser vattentillgĂ„ngen och vattenanvĂ€ndandet vĂ€ldigt olika ut vilket kan leda till vattenbrist eller att prioriteringar krĂ€vs mellan olika typ av vattenanvĂ€ndning. Det Ă€r tydligt att det behövs gemensamt arbete över alla sektorer med vattenresursplanering i ett avrinningsomrĂ„de.In this report, the concept of drought in Sweden as well as the causes is discussed. Thereport also discusses the spatial variability of water resources in Sweden. Water shortage is when the demand for water surpasses the water available. It is thereforevery much dependent on the water usage. Climate change causes higher temperature and a warmer Sweden thus affecting wateravailability. In general both temperature and precipitation are expected to increase inwintertime leading to more water available during winters. However, higher temperaturesduring summers cause a higher evaporation which might lead to less water available insummertime, especially in the southern parts of Sweden. The climate change will increasethe number of extreme rainfall events. The amount of rain during such short-term extremerainfall events is usually much more than the soilÂŽs infiltration capacity thus makingfloodings more common in future. Milder winters change the snow pattern, which inparticular affect rivers in the northern part of the country. During the summers 2016–2018, water shortages occurred in some parts of Sweden. Thecauses of water shortages were different for different parts and different years. Howeverit made Sweden to experience some of the impacts of climate change and a warmerclimate. It was an eye opener and showed us the importance of the adaptation to thesenew circumstances. Many factors are involved in the water availability. They can however be summarized in3 categories: Climate – temperature and precipitation for example. Storage capacity – how much water an area can store Water usage As a country, Sweden has abundant water resources and available fresh water. But watershortage might still occur. Water availability and water usage can vary a lot locally whichmight lead to water shortage in some regions. To cope with water shortages priorities areneeded between different sectors and interests. Many stakeholders need to agree andcompromise on the usage of water

    Policy brief: : Call for better management of micropollutants in wastewater

    No full text
    Urban wastewater treatment plants are important collection points for many chemical contaminants, often called micropollutants, which are widespread in the aquatic environment. Currently, this issue is not being sufficiently addressed by regional policy and EU-wide legislation. The EU’s Zero Pollution Ambition, the Chemicals Strategy for Sustainability and the likely revision of the Urban Waste-water Treatment Directive now provide opportunities to address this issue. Measures to prevent the emissions of micropollutants via wastewater treatment plants are needed both up- and downstream, to ensure policy coherence between EU water and chemicals legislation

    Policy brief: : Call for better management of micropollutants in wastewater

    No full text
    Urban wastewater treatment plants are important collection points for many chemical contaminants, often called micropollutants, which are widespread in the aquatic environment. Currently, this issue is not being sufficiently addressed by regional policy and EU-wide legislation. The EU’s Zero Pollution Ambition, the Chemicals Strategy for Sustainability and the likely revision of the Urban Waste-water Treatment Directive now provide opportunities to address this issue. Measures to prevent the emissions of micropollutants via wastewater treatment plants are needed both up- and downstream, to ensure policy coherence between EU water and chemicals legislation
    corecore