232 research outputs found

    Association of a Fasting Glucose Genetic Risk Score With Subclinical Atherosclerosis: The Atherosclerosis Risk in Communities (ARIC) Study

    Get PDF
    Elevated fasting glucose level is associated with increased carotid intima-media thickness (IMT), a measure of subclinical atherosclerosis. It is unclear if this association is causal. Using the principle of Mendelian randomization, we sought to explore the causal association between circulating glucose and IMT by examining the association of a genetic risk score with IMT. The sample was drawn from the Atherosclerosis Risk in Communities (ARIC) study and included 7,260 nondiabetic Caucasian individuals with IMT measurements and relevant genotyping. Components of the fasting glucose genetic risk score (FGGRS) were selected from a fasting glucose genome-wide association study in ARIC. The score was created by combining five single nucleotide polymorphisms (SNPs) (rs780094 [GCKR], rs560887 [G6PC2], rs4607517 [GCK], rs13266634 [SLC30A8], and rs10830963 [MTNR1B]) and weighting each SNP by its strength of association with fasting glucose. IMT was measured through bilateral carotid ultrasound. Mean IMT was regressed on the FGGRS and on the component SNPs, individually. The FGGRS was significantly associated (P = 0.009) with mean IMT. The difference in IMT predicted by a 1 SD increment in the FGGRS (0.0048 mm) was not clinically relevant but was larger than would have been predicted based on observed associations between the FFGRS, fasting glucose, and IMT. Additional adjustment for baseline measured glucose in regression models attenuated the association by about one third. The significant association of the FGGRS with IMT suggests a possible causal association of elevated fasting glucose with atherosclerosis, although it may be that these loci influence IMT through nonglucose pathways

    Research Directions in the Clinical Implementation of Pharmacogenomics: An Overview of US Programs and Projects

    Get PDF
    Response to a drug often differs widely among individual patients. This variability is frequently observed not only with respect to effective responses but also with adverse drug reactions. Matching patients to the drugs that are most likely to be effective and least likely to cause harm is the goal of effective therapeutics. Pharmacogenomics (PGx) holds the promise of precision medicine through elucidating the genetic determinants responsible for pharmacological outcomes and using them to guide drug selection and dosing. Here we survey the US landscape of research programs in PGx implementation, review current advances and clinical applications of PGx, summarize the obstacles that have hindered PGx implementation, and identify the critical knowledge gaps and possible studies needed to help to address them

    Causal Effects on Complex Traits Are Similar for Common Variants Across Segments of Different Continental Ancestries Within Admixed Individuals

    Get PDF
    Individuals of admixed ancestries (for example, African Americans) inherit a mosaic of ancestry segments (local ancestry) originating from multiple continental ancestral populations. This offers the unique opportunity of investigating the similarity of genetic effects on traits across ancestries within the same population. Here we introduce an approach to estimate correlation of causal genetic effects (radmix) across local ancestries and analyze 38 complex traits in African-European admixed individuals (N = 53,001) to observe very high correlations (meta-analysis radmix = 0.95, 95% credible interval 0.93-0.97), much higher than correlation of causal effects across continental ancestries. We replicate our results using regression-based methods from marginal genome-wide association study summary statistics. We also report realistic scenarios where regression-based methods yield inflated heterogeneity-by-ancestry due to ancestry-specific tagging of causal effects, and/or polygenicity. Our results motivate genetic analyses that assume minimal heterogeneity in causal effects by ancestry, with implications for the inclusion of ancestry-diverse individuals in studies

    Suggestion for linkage of chromosome 1p35.2 and 3q28 to plasma adiponectin concentrations in the GOLDN Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adiponectin is inversely associated with obesity, insulin resistance, and atherosclerosis, but little is known about the genetic pathways that regulate the plasma level of this protein. To find novel genes that influence circulating levels of adiponectin, a genome-wide linkage scan was performed on plasma adiponectin concentrations before and after 3 weeks of treatment with fenofibrate (160 mg daily) in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) Study. We studied Caucasian individuals (n = 1121) from 190 families in Utah and Minnesota. Of these, 859 individuals from 175 families had both baseline and post-fenofibrate treatment measurements for adiponectin. Plasma adiponectin concentrations were measured with an ELISA assay. All participants were typed for microsatellite markers included in the Marshfield Mammalian Genotyping Service marker set 12, which includes 407 markers spaced at approximately 10 cM regions across the genome. Variance components analysis was used to estimate heritability and to perform genome-wide scans. Adiponectin was adjusted for age, sex, and field center. Additional models also included BMI adjustment.</p> <p>Results</p> <p>Baseline and post-fenofibrate adiponectin measurements were highly correlated (r = 0.95). Suggestive (LOD > 2) peaks were found on chromosomes 1p35.2 and 3q28 (near the location of the adiponectin gene).</p> <p>Conclusion</p> <p>Two candidate genes, <it>IL22RA1 </it>and <it>IL28RA</it>, lie under the chromosome 1 peak; further analyses are needed to identify the specific genetic variants in this region that influence circulating adiponectin concentrations.</p

    Association of rs780094 in GCKR with Metabolic Traits and Incident Diabetes and Cardiovascular Disease: The ARIC Study

    Get PDF
    The minor T-allele of rs780094 in the glucokinase regulator gene (GCKR) associates with a number of metabolic traits including higher triglyceride levels and improved glycemic regulation in study populations of mostly European ancestry. Using data from the Atherosclerosis Risk in Communities (ARIC) Study, we sought to replicate these findings, examine them in a large population-based sample of African American study participants, and to investigate independent associations with other metabolic traits in order to determine if variation in GKCR contributes to their observed clustering. In addition, we examined the association of rs780094 with incident diabetes, coronary heart disease (CHD), and stroke over up mean follow-up times of 8, 15, and 15 years, respectively.Race-stratified analyses were conducted among 10,929 white and 3,960 black participants aged 45-64 at baseline assuming an additive genetic model and using linear and logistic regression and Cox proportional hazards models.Previous findings replicated among white participants in multivariable adjusted models: the T-allele of rs780094 was associated with lower fasting glucose (p = 10(-7)) and insulin levels (p = 10(-6)), lower insulin resistance (HOMA-IR, p = 10(-9)), less prevalent diabetes (p = 10(-6)), and higher CRP (p = 10(-8)), 2-h postprandial glucose (OGTT, p = 10(-6)), and triglyceride levels (p = 10(-31)). Moreover, the T-allele was independently associated with higher HDL cholesterol levels (p = 0.022), metabolic syndrome prevalence (p = 0.043), and lower beta-cell function measured as HOMA-B (p = 0.011). Among black participants, the T-allele was associated only with higher triglyceride levels (p = 0.004) and lower insulin levels (p = 0.002) and HOMA-IR (p = 0.013). Prospectively, the T-allele was associated with reduced incidence of diabetes (p = 10(-4)) among white participants, but not with incidence of CHD or stroke.Our findings indicate rs780094 has independent associations with multiple metabolic traits as well as incident diabetes, but not incident CHD or stroke. The magnitude of association between the SNP and most traits was of lower magnitude among African American compared to white participants

    Pleiotropic genes for metabolic syndrome and inflammation

    Get PDF
    Metabolic syndrome (MetS) has become a health and financial burden worldwide. The MetS definition captures clustering of risk factors that predict higher risk for diabetes mellitus and cardiovascular disease. Our study hypothesis is that additional to genes influencing individual MetS risk factors, genetic variants exist that influence MetS and inflammatory markers forming a predisposing MetS genetic network. To test this hypothesis a staged approach was undertaken. (a) We analyzed 17 metabolic and inflammatory traits in more than 85,500 participants from 14 large epidemiological studies within the Cross Consortia Pleiotropy Group. Individuals classified with MetS (NCEP definition), versus those without, showed on average significantly different levels for most inflammatory markers studied. (b) Paired average correlations between 8 metabolic traits and 9 inflammatory markers from the same studies as above, estimated with two methods, and factor analyses on large simulated data, helped in identifying 8 combinations of traits for follow-up in meta-analyses, out of 130,305 possible combinations between metabolic traits and inflammatory markers studied. (c) We performed correlated meta-analyses for 8 metabolic traits and 6 inflammatory markers by using existing GWAS published genetic summary results, with about 2.5 million SNPs from twelve predominantly largest GWAS consortia. These analyses yielded 130 unique SNPs/genes with pleiotropic associations (a SNP/gene associating at least one metabolic trait and one inflammatory marker). Of them twenty-five variants (seven loci newly reported) are proposed as MetS candidates. They map to genes MACF1, KIAA0754, GCKR, GRB14, COBLL1, LOC646736-IRS1, SLC39A8, NELFE, SKIV2L, STK19, TFAP2B, BAZ1B, BCL7B, TBL2, MLXIPL, LPL, TRIB1, ATXN2, HECTD4, PTPN11, ZNF664, PDXDC1, FTO, MC4R and TOMM40. Based on large data evidence, we conclude that inflammation is a feature of MetS and several gene variants show pleiotropic genetic associations across phenotypes and might explain a part of MetS correlated genetic architecture. These findings warrant further functional investigation. (C) 2014 Elsevier Inc. All rights reserved

    Association of a 62 Variants Type 2 Diabetes Genetic Risk Score With Markers of Subclinical Atherosclerosis: A Transethnic, Multicenter Study

    Get PDF
    BACKGROUND: Type 2 diabetes mellitus (T2D) and cardiovascular disease share risk factors and subclinical atherosclerosis (SCA) predicts events in those with and without diabetes mellitus. T2D genetic risk may predict both T2D and SCA. We hypothesized that greater T2D genetic risk is associated with higher extent of SCA. METHODS AND RESULTS: In a cross-sectional analysis, including 649210 European Americans, 3773 African Americans, 1446 Hispanic Americans, and 773 Chinese Americans without known cardiovascular disease and enrolled in the Framingham Heart Study, Coronary Artery Risk Development in Young Adults, Multi-Ethnic Study of Atherosclerosis, and Genetic Epidemiology Network of Arteriopathy studies, we tested a 62 T2D-loci genetic risk score for association with measures of SCA, including coronary artery or abdominal aortic calcium score, common and internal carotid artery intima-media thickness, and ankle-brachial index. We used ancestry-stratified linear regression models, with random effects accounting for family relatedness when appropriate, applying a genetic-only (adjusted for sex) and a full SCA risk factors-adjusted model (significance, P<0.01=0.05/5, number of traits analyzed). An inverse association with coronary artery calcium score in Multi-Ethnic Study of Atherosclerosis Europeans (fully-adjusted P=0.004) and with common carotid artery intima-media thickness in the Framingham Heart Study (P=0.009) was not confirmed in other study cohorts, either separately or in meta-analysis. Secondary analyses showed no consistent associations with \u3b2-cell and insulin resistance genetic risk sub-scores in the Framingham Heart Study and in the Coronary Artery Risk Development in Young Adults. CONCLUSIONS: SCA does not have a major genetic component linked to a burden of 62 T2D loci identified by large genome-wide association studies. A shared T2D-SCA genetic basis, if any, might become apparent from better functional information about both T2D and cardiovascular disease risk loci

    No Interactions Between Previously Associated 2-Hour Glucose Gene Variants and Physical Activity or BMI on 2-Hour Glucose Levels

    Get PDF
    Gene–lifestyle interactions have been suggested to contribute to the development of type 2 diabetes. Glucose levels 2 h after a standard 75-g glucose challenge are used to diagnose diabetes and are associated with both genetic and lifestyle factors. However, whether these factors interact to determine 2-h glucose levels is unknown. We meta-analyzed single nucleotide polymorphism (SNP) × BMI and SNP × physical activity (PA) interaction regression models for five SNPs previously associated with 2-h glucose levels from up to 22 studies comprising 54,884 individuals without diabetes. PA levels were dichotomized, with individuals below the first quintile classified as inactive (20%) and the remainder as active (80%). BMI was considered a continuous trait. Inactive individuals had higher 2-h glucose levels than active individuals (β = 0.22 mmol/L [95% CI 0.13–0.31], P = 1.63 × 10−6). All SNPs were associated with 2-h glucose (β = 0.06–0.12 mmol/allele, P ≤ 1.53 × 10−7), but no significant interactions were found with PA (P > 0.18) or BMI (P ≥ 0.04). In this large study of gene–lifestyle interaction, we observed no interactions between genetic and lifestyle factors, both of which were associated with 2-h glucose. It is perhaps unlikely that top loci from genome-wide association studies will exhibit strong subgroup-specific effects, and may not, therefore, make the best candidates for the study of interactions
    • …
    corecore