13,605 research outputs found
Realizing time crystals in discrete quantum few-body systems
The exotic phenomenon of time translation symmetry breaking under periodic
driving - the time crystal - has been shown to occur in many-body systems even
in clean setups where disorder is absent. In this work, we propose the
realization of time-crystals in few-body systems, both in the context of
trapped cold atoms with strong interactions and of a circuit of superconducting
qubits. We show how these two models can be treated in a fairly similar way by
adopting an effective spin chain description, to which we apply a simple
driving protocol. We focus on the response of the magnetization in the presence
of imperfect pulses and interactions, and show how the results can be
interpreted, in the cold atomic case, in the context of experiments with
trapped bosons and fermions. Furthermore, we provide a set of realistic
parameters for the implementation of the superconducting circuit.Comment: 6 pages, 4 figure
Bent-Double Radio Sources as Probes of Intergalactic Gas
As the most common environment in the universe, groups of galaxies are likely
to contain a significant fraction of the missing baryons in the form of
intergalactic gas. The density of this gas is an important factor in whether
ram pressure stripping and strangulation affect the evolution of galaxies in
these systems. We present a method for measuring the density of intergalactic
gas using bent-double radio sources that is independent of temperature, making
it complementary to current absorption line measurements. We use this method to
probe intergalactic gas in two different environments: inside a small group of
galaxies as well as outside of a larger group at a 2 Mpc radius and measure
total gas densities of and per cubic centimeter (random and systematic
errors) respectively. We use X-ray data to place an upper limit of K on the temperature of the intragroup gas in the small group.Comment: 6 pages, 1 figure, accepted for publication in Ap
Single wall carbon nanotube double quantum dot
We report on two top-gate defined, coupled quantum dots in a semiconducting
single wall carbon nanotube, constituting a tunable double quantum dot system.
The single wall carbon nanotubes are contacted by titanium electrodes, and
gated by three narrow top-gate electrodes as well as a back-gate. We show that
a bias spectroscopy plot on just one of the two quantum dots can be used to
extract the addition energy of both quantum dots. Furthermore, honeycomb charge
stability diagrams are analyzed by an electrostatic capacitor model that
includes cross capacitances, and we extract the coupling energy of the double
quantum dot.Comment: Published in Applied Physics Letters 4 December 2006.
http://link.aip.org/link/?APL/89/23211
The Flow of Gases in Narrow Channels
Measurements were made of the flow of gases through various narrow channels a few microns wide at average pressures from 0.00003 to 40 cm. Hg. The flow rate, defined as the product of pressure and volume rate of flow at unit pressure difference, first decreased linearly with decrease in mean pressure in the channel, in agreement with laminar-flow theory, reached a minimum when the mean path length was approximately equal to the channel width, and then increased to a constant value. The product of flow rate and square root of molecular number was approximately the same function of mean path length for all gases for a given channel
Meteorological application of Apollo photography Final report
Development of meteorological information and parameters based on cloud photographs taken during Apollo 9 fligh
Optical Pulse Dynamics in Active Metamaterials with Positive and Negative Refractive Index
We study numerically the propagation of two-color light pulses through a
metamaterial doped with active atoms such that the carrier frequencies of the
pulses are in resonance with two atomic transitions in the
configuration and that one color propagates in the regime of positive
refraction and the other in the regime of negative refraction. In such a
metamaterial, one resonant color of light propagates with positive and the
other with negative group velocity. We investigate nonlinear interaction of
these forward- and backward-propagating waves, and find self-trapped waves,
counter-propagating radiation waves, and hot spots of medium excitation.Comment: 9 pages, 6 figure
Probing the mechanical unzipping of DNA
A study of the micromechanical unzipping of DNA in the framework of the
Peyrard-Bishop-Dauxois model is presented. We introduce a Monte Carlo technique
that allows accurate determination of the dependence of the unzipping forces on
unzipping speed and temperature. Our findings agree quantitatively with
experimental results for homogeneous DNA, and for -phage DNA we
reproduce the recently obtained experimental force-temperature phase diagram.
Finally, we argue that there may be fundamental differences between {\em in
vivo} and {\em in vitro} DNA unzipping
X-Ray Emission from the Warm Hot Intergalactic Medium
The number of detected baryons in the Universe at z<0.5 is much smaller than
predicted by standard big bang nucleosynthesis and by the detailed observation
of the Lyman alpha forest at red-shift z=2. Hydrodynamical simulations indicate
that a large fraction of the baryons today is expected to be in a ``warm-hot''
(10^5-10^7K) filamentary gas, distributed in the intergalactic medium. This
gas, if it exists, should be observable only in the soft X-ray and UV bands.
Using the predictions of a particular hydrodynamic model, we simulated the
expected X-ray flux as a function of energy in the 0.1-2 keV band due to the
Warm-Hot Intergalactic Medium (WHIM), and compared it with the flux from local
and high red-shift diffuse components. Our results show that as much as 20% of
the total diffuse X-ray background (DXB) in the energy range 0.37-0.925keV
could be due to X-ray flux from the WHIM, 70% of which comes from filaments at
redshift z between 0.1 and 0.6. Simulations done using a FOV of 3', comparable
with that of Suzaku and Constellation-X, show that in more than 20% of the
observations we expect the WHIM flux to contribute to more than 20% of the DXB.
These simulations also show that in about 10% of all the observations a single
bright filament in the FOV accounts, alone, for more than 20% of the DXB flux.
Red-shifted oxygen lines should be clearly visible in these observations.Comment: 19 pages, 6 figure
Non-covalent interactions across organic and biological subsets of chemical space: Physics-based potentials parametrized from machine learning
Classical intermolecular potentials typically require an extensive
parametrization procedure for any new compound considered. To do away with
prior parametrization, we propose a combination of physics-based potentials
with machine learning (ML), coined IPML, which is transferable across small
neutral organic and biologically-relevant molecules. ML models provide
on-the-fly predictions for environment-dependent local atomic properties:
electrostatic multipole coefficients (significant error reduction compared to
previously reported), the population and decay rate of valence atomic
densities, and polarizabilities across conformations and chemical compositions
of H, C, N, and O atoms. These parameters enable accurate calculations of
intermolecular contributions---electrostatics, charge penetration, repulsion,
induction/polarization, and many-body dispersion. Unlike other potentials, this
model is transferable in its ability to handle new molecules and conformations
without explicit prior parametrization: All local atomic properties are
predicted from ML, leaving only eight global parameters---optimized once and
for all across compounds. We validate IPML on various gas-phase dimers at and
away from equilibrium separation, where we obtain mean absolute errors between
0.4 and 0.7 kcal/mol for several chemically and conformationally diverse
datasets representative of non-covalent interactions in biologically-relevant
molecules. We further focus on hydrogen-bonded complexes---essential but
challenging due to their directional nature---where datasets of DNA base pairs
and amino acids yield an extremely encouraging 1.4 kcal/mol error. Finally, and
as a first look, we consider IPML in denser systems: water clusters,
supramolecular host-guest complexes, and the benzene crystal.Comment: 15 pages, 9 figure
- …