529 research outputs found

    Non-Data-Aided Parameter Estimation in an Additive White Gaussian Noise Channel

    Full text link
    Non-data-aided (NDA) parameter estimation is considered for binary-phase-shift-keying transmission in an additive white Gaussian noise channel. Cramer-Rao lower bounds (CRLBs) for signal amplitude, noise variance, channel reliability constant and bit-error rate are derived and it is shown how these parameters relate to the signal-to-noise ratio (SNR). An alternative derivation of the iterative maximum likelihood (ML) SNR estimator is presented together with a novel, low complexity NDA SNR estimator. The performance of the proposed estimator is compared to previously suggested estimators and the CRLB. The results show that the proposed estimator performs close to the iterative ML estimator at significantly lower computational complexity

    A Tight Lower Bound to the Outage Probability of Discrete-Input Block-Fading Channels

    Full text link
    In this correspondence, we propose a tight lower bound to the outage probability of discrete-input Nakagami-m block-fading channels. The approach permits an efficient method for numerical evaluation of the bound, providing an additional tool for system design. The optimal rate-diversity trade-off for the Nakagami-m block-fading channel is also derived and a tight upper bound is obtained for the optimal coding gain constant.Comment: 22 pages, 4 figures. This work has been accepted for IEEE Transactions on Information Theory and has been presented in part at the 2007 IEEE International Symposium on Information Theory, Nice, France, June 200

    Asymptotic Analysis of SU-MIMO Channels With Transmitter Noise and Mismatched Joint Decoding

    Get PDF
    Hardware impairments in radio-frequency components of a wireless system cause unavoidable distortions to transmission that are not captured by the conventional linear channel model. In this paper, a 'binoisy' single-user multiple-input multiple-output (SU-MIMO) relation is considered where the additional distortions are modeled via an additive noise term at the transmit side. Through this extended SU-MIMO channel model, the effects of transceiver hardware impairments on the achievable rate of multi-antenna point-to-point systems are studied. Channel input distributions encompassing practical discrete modulation schemes, such as, QAM and PSK, as well as Gaussian signaling are covered. In addition, the impact of mismatched detection and decoding when the receiver has insufficient information about the non-idealities is investigated. The numerical results show that for realistic system parameters, the effects of transmit-side noise and mismatched decoding become significant only at high modulation orders.Comment: 16 pages, 7 figure
    corecore