492 research outputs found

    Climbing fiber regulation of spontaneous Purkinje cell activity and cerebellum-dependent blink responses

    Get PDF
    It has been known for a long time that GABAergic Purkinje cells in the cerebellar cortex, as well as their target neurons in the cerebellar nuclei, are spontaneously active. The cerebellar output will, therefore, depend on how input is integrated into this spontaneous activity. It has been shown that input from climbing fibers originating in the inferior olive controls the spontaneous activity in Purkinje cells. While blocking climbing fiber input to the Purkinje cells causes a dramatic increase in the firing rate, increased climbing fiber activity results in reduced Purkinje cell activity. However, the exact calibration of this regulation has not been examined systematically. Here we examine the relation between climbing fiber stimulation frequency and Purkinje cell activity in unanesthetized decerebrated ferrets. The results revealed a gradual suppression of Purkinje cell activity, starting at climbing fiber stimulation frequencies as low as 0.5 Hz. At 4 Hz, Purkinje cells were completely silenced. This effect lasted an average of 2 min after the stimulation rate was reduced to a lower level. We also examined the effect of sustained climbing fiber stimulation on overt behavior. Specifically, we analyzed conditioned blink responses, which are known to be dependent on the cerebellum, while stimulating the climbing fibers at different frequencies. In accordance with the neurophysiological data, the conditioned blink responses were suppressed at stimulation frequencies of =4 Hz

    Middle Ordovician carbonate facies development, conodont biostratigraphy and faunal diversity patterns at the Lynna River, northwestern Russia

    Get PDF
    The Ordovician Period has emerged as a highly dynamic time in Earth history. Comprehensive work on chrono, chemo-and biostratigraphy has resulted in an overall wellconstrained systemic framework, but several local successions around the globe still await detailed analysis in many respects. Herein we perform a highresolution analysis of abiotic and biotic signals in the Lynna River section, a key locality in northwestern Russia. As this section has been pivotal in documenting the temporal evolution of the Great Ordovician Biodiversification Event on Baltica, the macroscopic and microscopic characteristics of the local succession reveal important paleoenvironmental information that ties into the global development during the Middle Ordovician. The results add particularly to the understanding of the characteristics and largescale sedimentary ‘behavior’ of the Baltoscandian paleobasin. Microfacies vary consistently with the macroscopic appearance of the rocks, with intervals characterized by competent limestone being associated with coarser carbonate textures and intervals dominated by marly beds associated with finer textures. Along with carbonate textures, fossil grain assemblages vary in a rhythmic (~cyclic) manner. The local rocks are commonly partly dolomitized, with the proportion of dolomitization increasing upsection. Regional comparisons suggest that the changes in overall macro and microfacies were strongly related to variations in sea level. New highresolution conodont biostratigraphic data largely confirm previous regional correlations based on lithostratigraphy and trilobite faunas, and enable more robust correlations worldwide

    Forest edges and other semi-natural habitat edges increase wild bee species richness and habitat connectivity in intensively managed temperate landscapes

    Get PDF
    Pollinator conservation schemes are typically focused on conserving existing-, restoring degraded- or establishing new wild bee habitats. The effectiveness of such conservation schemes depends on the presence of dispersal corridors that allow habitat colonization by bees. Nonetheless, we lack an understanding of the role of semi-natural habitats edges on the connectivity of pollinator communities across intensively managed landscapes. Here, we use data from wild bee communities comprising 953 occurrences from 79 species of non-parasitic bees, sampled at 68 locations distributed across a Norwegian and a Danish landscape to show that the proportion of semi-natural habitat edges is positively correlated to bee species richness and habitat connectivity. Specifically, we found that wild bee species richness sampled along roadsides increased with the proportion of semi-natural habitat edges within1.5 km of the study sites and with local plant species richness. We combined maps showing the proportion of seminatural habitat edges with least cost path analysis to find the most likely dispersal route between our bee communities. We find that these least cost path lengths provide better models of bee species compositional similarity than geographic distance (|ΔAICc| > 2), suggesting that seminatural habitat edges act as dispersal corridors in intensively managed landscapes. However, we also find that compositional similarity between communities depend on site-specific plant species richness stressing the importance of improving the habitat quality of edge habitats if they are to function as dispersal corridors. We discuss potential management options for improving wild bee habitat conditions along seminatural habitat edges and illustrate how maps of least cost paths can be used to identify dispersal corridors between pollinator habitats of conservation priority. Maps of dispersal corridors can be used to direct wild bee habitat management actions along seminatural habitat edges to facilitate the dispersal of bees between larger grassland habitats. Bees, Connectivity, Conservation planning, Pollinators, Restoration, GrasslandacceptedVersio

    Seyfert's Sextet: where is the gas?

    Full text link
    Seyfert's Sextet (a.k.a HCG 79) is one of the most compact and isolated galaxy groups in the local Universe. It shows a prominent diffuse light component that accounts for ~50% of the total observed light. This likely indicates that the group is in an advanced evolutionary phase, which would predict a significant hot gaseous component. Previous X-ray observations had suggested a low luminosity for this system, but with large uncertainties and poor resolution. We present the results from a deep (70 ks), high resolution Chandra observation of Seyfert's Sextet, requested with the aim of separating the X-ray emission associated with the individual galaxies from that of a more extended inter-galactic component. We discuss the spatial and spectral characteristics of this group we derive with those of a few similar systems also studied in the X-ray band. The high resolution X-ray image indicates that the majority of the detected emission does not arise in the compact group but is concentrated towards the NW and corresponds to what appears to be a background galaxy cluster. The emission from the group alone has a total luminosity of ~1x10^40 erg/s in the (0.5-5) keV band. Most of the luminosity can be attributed to the individual sources in the galaxies, and only ~2x10^39 erg/s is due to a gaseous component. However, we find that this component is also mostly associated with the individual galaxies of the Sextet, leaving little or no residual in a truly IGM component. The extremely low luminosity of the diffuse emission in Seyfert's Sextet might be related to its small total mass.Comment: 8 pages, 7 figures. Accepted on A&

    A direct limit on the turbulent velocity of the intracluster medium in the core of Abell 1835 from XMM-Newton

    Full text link
    We examine deep XMM-Newton Reflection Grating Spectrometer (RGS) observations of the X-ray luminous galaxy cluster A1835. For the first time in a galaxy cluster we place direct limits on turbulent broadening of the emission lines. This is possible because the coolest X-ray emitting gas in the cluster, which is responsible for the lines, occupies a small region within the core. The most conservative determination of the 90 per cent upper limit on line-of-sight, non-thermal, velocity broadening is 274 km/s, measured from the emission lines originating within 30 kpc radius. The ratio of turbulent to thermal energy density in the core is therefore less than 13 per cent. There are no emission lines in the spectrum showing evidence for gas below ~3.5 keV. We examine the quantity of gas as a function of temperature and place a limit of 140 Msun/yr (90 per cent) for gas cooling radiatively below 3.85 keV.Comment: 5 pages, accepted by MNRAS, includes minor change suggested by refere

    Readout for intersatellite laser interferometry: Measuring low frequency phase fluctuations of HF signals with microradian precision

    Full text link
    Precision phase readout of optical beat note signals is one of the core techniques required for intersatellite laser interferometry. Future space based gravitational wave detectors like eLISA require such a readout over a wide range of MHz frequencies, due to orbit induced Doppler shifts, with a precision in the order of μrad/Hz\mu \textrm{rad}/\sqrt{\textrm{Hz}} at frequencies between 0.1 mHz0.1\,\textrm{mHz} and 1 Hz1\,\textrm{Hz}. In this paper, we present phase readout systems, so-called phasemeters, that are able to achieve such precisions and we discuss various means that have been employed to reduce noise in the analogue circuit domain and during digitisation. We also discuss the influence of some non-linear noise sources in the analogue domain of such phasemeters. And finally, we present the performance that was achieved during testing of the elegant breadboard model of the LISA phasemeter, that was developed in the scope of an ESA technology development activity.Comment: submitted to Review of Scientific Instruments on April 30th 201

    QuantumATK: An integrated platform of electronic and atomic-scale modelling tools

    Full text link
    QuantumATK is an integrated set of atomic-scale modelling tools developed since 2003 by professional software engineers in collaboration with academic researchers. While different aspects and individual modules of the platform have been previously presented, the purpose of this paper is to give a general overview of the platform. The QuantumATK simulation engines enable electronic-structure calculations using density functional theory or tight-binding model Hamiltonians, and also offers bonded or reactive empirical force fields in many different parametrizations. Density functional theory is implemented using either a plane-wave basis or expansion of electronic states in a linear combination of atomic orbitals. The platform includes a long list of advanced modules, including Green's-function methods for electron transport simulations and surface calculations, first-principles electron-phonon and electron-photon couplings, simulation of atomic-scale heat transport, ion dynamics, spintronics, optical properties of materials, static polarization, and more. Seamless integration of the different simulation engines into a common platform allows for easy combination of different simulation methods into complex workflows. Besides giving a general overview and presenting a number of implementation details not previously published, we also present four different application examples. These are calculations of the phonon-limited mobility of Cu, Ag and Au, electron transport in a gated 2D device, multi-model simulation of lithium ion drift through a battery cathode in an external electric field, and electronic-structure calculations of the composition-dependent band gap of SiGe alloys.Comment: Submitted to Journal of Physics: Condensed Matte

    Xenobiotic Exposure and Migraine-Associated Signaling:A Multimethod Experimental Study Exploring Cellular Assays in Combination with Ex Vivo and In Vivo Mouse Models

    Get PDF
    BACKGROUND: Mechanisms for how environmental chemicals might influence pain has received little attention. Epidemiological studies suggest that environmental factors such as pollutants might play a role in migraine prevalence. Potential targets for pollutants are the transient receptor potential (TRP) channels ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1), which on activation release pain-inducing neuropeptide calcitonin gene-related peptide (CGRP). OBJECTIVE: In this study, we aimed to examine the hypothesis that environmental pollutants via TRP channel signaling and subsequent CGRP release trigger migraine signaling and pain. METHODS: A calcium imaging-based screen of environmental chemicals was used to investigate activation of migraine pain-associated TRP channels TRPA1 and TRPV1. Based on this screen, whole-cell patch clamp and in silico docking were performed for the pesticide pentachlorophenol (PCP) as proof of concept. Subsequently, PCP-mediated release of CGRP and vasodilatory responses of cerebral arteries were investigated. Finally, we tested whether PCP could induce a TRPA1-dependent induction of cutaneous hypersensitivity in vivo in mice as a model of migraine-like pain. RESULTS: A total of 16 out of the 52 screened environmental chemicals activated TRPA1 at 10 or formula presented . None of the investigated compounds activated TRPV1. Using PCP as a model of chemical interaction with TRPA1, in silico molecular modeling suggested that PCP is stabilized in a lipid-binding pocket of TRPA1 in comparison with TRPV1. In vitro, ex vivo, and in vivo experiments showed that PCP induced calcium influx in neurons and resulted in a TRPA1-dependent CGRP release from the brainstem and dilation of cerebral arteries. In a mouse model of migraine-like pain, PCP induced a TRPA1-dependent increased pain response (formula presented ). DISCUSSION: Here we show that multiple environmental pollutants interact with the TRPA1-CGRP migraine pain pathway. The data provide valuable insights into how environmental chemicals can interact with neurobiology and provide a potential mechanism for putative increases in migraine prevalence over the last decades. https://doi.org/10.1289/EHP12413.</p
    • …
    corecore