22 research outputs found

    Advantage of Animal Models with Metabolic Flexibility for Space Research Beyond Low Earth Orbit

    Get PDF
    As the worlds space agencies and commercial entities continue to expand beyond Low Earth Orbit (LEO), novel approaches to carry out biomedical experiments with animals are required to address the challenge of adaptation to space flight and new planetary environments. The extended time and distance of space travel along with reduced involvement of Earth-based mission support increases the cumulative impact of the risks encountered in space. To respond to these challenges, it becomes increasingly important to develop the capability to manage an organisms self-regulatory control system, which would enable survival in extraterrestrial environments. To significantly reduce the risk to animals on future long duration space missions, we propose the use of metabolically flexible animal models as pathfinders, which are capable of tolerating the environmental extremes exhibited in spaceflight, including altered gravity, exposure to space radiation, chemically reactive planetary environments and temperature extremes.In this report we survey several of the pivotal metabolic flexibility studies and discuss the importance of utilizing animal models with metabolic flexibility with particular attention given to the ability to suppress the organism's metabolism in spaceflight experiments beyond LEO. The presented analysis demonstrates the adjuvant benefits of these factors to minimize damage caused by exposure to spaceflight and extreme planetary environments. Examples of microorganisms and animal models with dormancy capabilities suitable for space research are considered in the context of their survivability under hostile or deadly environments outside of Earth. Potential steps toward implementation of metabolic control technology in spaceflight architecture and its benefits for animal experiments and manned space exploration missions are discussed

    GeneLab: NASA's Open Access, Collaborative Platform for Systems Biology and Space Medicine

    Get PDF
    NASA is investing in GeneLab1 (http:genelab.nasa.gov), a multi-year effort to maximize utilization of the limited resources to conduct biological and medical research in space, principally aboard the International Space Station (ISS). High-throughput genomic, transcriptomic, proteomic or other omics analyses from experiments conducted on the ISS will be stored in the GeneLab Data Systems (GLDS), an open-science information system that will also include a biocomputation platform with collaborative science capabilities, to enable the discovery and validation of molecular networks

    UV Shielding of Bacillus pumilus SAFR-032 Endospores by Martian Regolith Simulants

    Get PDF
    As exploration of the solar system advances with life detection missions on the horizon, the concern for planetary protection has grown considerably. When attempting to detect extraterrestrial life, the likelihood of false positives from terrestrial contamination must be minimized. The Exposing Microorganisms in the Stratosphere (E-MIST) balloon project aims to evaluate whether resilient terrestrial bacteria can survive stressors in a Mars-like environment. This is accomplished by sending Bacillus pumilus SAFR-032, an endospore-forming bacterial isolate from a spacecraft assembly facility, to the Earth's middle stratosphere (30-38 kilometers), where low temperature and pressure and high radiation and dryness conditions are similar to the surface of Mars. Previous ground and flight tests showed that the vast majority of SAFR-032 spores (99.99 percent) were inactivated by direct sunlight due to ultraviolet (UV) radiation. This observation led us to explore the role of dust shielding in changing microbial survivorship outcomes. To determine the dust particle distributions and density for potentially shielding microbes from UV radiation, samples of a Martian dust simulant were mixed with SAFR-032 spores. The dry heat sterilized simulant used was JSC MARS-1, weathered volcanic ash from Hawaii that displays many chemical and physical properties similar to the Martian soil as characterized by the Viking Lander 1, including reflectance spectrum, chemical composition, mineralogy, grain size, specific gravity, and magnetic properties. First, scanning electron microscopy was undertaken to visualize the aggregation of the spores with dust particles (i.e., shading effects), and samples of varying dust concentrations were subsequently irradiated with UVC light to test survivorship outcomes. After a relationship between dust concentration and spore survivorship was determined, a solar simulator capable of irradiating samples with a fuller UV spectrum (less than 280-400 nanometers) was used to perform a more robust middle stratosphere simulation. Taken together, we will use results from the ground-based irradiation studies to feed into experimental designs for the next E-MIST ultra-long duration polar balloon flight launched by NASA

    Temporal RNA Integrity Analysis of Archived Spaceflight Biological Samples from ALSDA from 1991 to 2016

    Get PDF
    The purpose of this study is to assess the quality of spaceflight tissues stored in Ames Life Science Data Archive (ALSDA) freezers. Garnering information for downstream functional analysis such as generation of omics datasets from tissues is, in part, dependent on the state of sample preservation. To assess the viability of a select group of tissues, RNA integrity number (RIN) values were calculated for RNA extracted from rodent livers. Rat livers from Spacelab Life Sciences 1 (SLS-1) and mouse livers from Commercial Biomedical Test Module 3 (CBTM-3), Rodent Research 1 (RR1), and Rodent Research 3 (RR3) were tested. It was found that mean RIN values from CBTM3, RR1, and RR3 were suitable for downstream functional analysis (RIN greater than 5) while the mean RIN value for SLS-1 was not (RIN equal to 2.5 plus or minus 0.1). Information from this study could lay the foundation for future efforts in determining the types of assays that are most appropriate for different tissues in ALSDA freezers, which would maximize the scientific return on rare spaceflight samples

    Software for the frontiers of quantum chemistry:An overview of developments in the Q-Chem 5 package

    Get PDF
    This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design

    A Mission Simulating the Search for Life on Mars with Automated Drilling, Sample Handling, and Life Detection Instruments Performed in the Hyperarid Core of the Atacama Desert, Chile

    Get PDF
    We report on a field demonstration of a rover-based drilling mission to search for biomolecular evidence of life in the arid core of the Atacama Desert, Chile. The KREX2 rover carried the Honeybee Robotics 1 m depth The Regolith and Ice Drill for Exploration of New Terrains (TRIDENT) drill and a robotic arm with scoop that delivered subsurface fines to three flight prototype instruments: (1) The Signs of Life Detector (SOLID), a protein and biomolecule analyzer based on fluorescence sandwich microarray immunoassay; (2) the Planetary In Situ Capillary Electrophoresis System (PISCES), an amino acid analyzer based on subcritical water extraction coupled to microchip electrophoresis analysis; and (3) a Wet Chemistry Laboratory cell to measure soluble ions using ion selective electrodes and chronopotentiometry. A California-based science team selected and directed drilling and sampling of three sites separated by hundreds of meters that included a light-toned basin area showing evidence of aqueous activity surrounded by a rocky desert pavement. Biosignatures were detected in basin samples collected at depths ranging from 20 to 80 cm but were not detected in the surrounding area. Subsurface stratigraphy of the units drilled was interpreted from drill sensor data as fine-scale layers of sand/clay sediments interspersed with layers of harder material in the basins and a uniform subsurface composed of course-to-fine sand in the surroundings. The mission timeline and number of commands sent to accomplish each activity were tracked. The deepest sample collected (80 cm) required 55 commands, including drilling and delivery to three instruments. Elapsed time required for drilling and sample handling was less than 3 hours to collect sample from 72 cm depth, including time devoted to recovery from a jammed drill. The experiment demonstrated drilling, sample transfer technologies, and instruments that accomplished successful detection of biomolecular evidence of life in one of the most biologically sparse environments on Earth

    An Unusual Inverted Saline Microbial Mat Community in an Interdune Sabkha in the Rub' al Khali (the Empty Quarter), United Arab Emirates.

    No full text
    Salt flats (sabkha) are a recognized habitat for microbial life in desert environments and as analogs of habitats for possible life on Mars. Here we report on the physical setting and microbiology of interdune sabkhas among the large dunes in the Rub' al Khali (the Empty Quarter) in Liwa Oasis, United Arab Emirates. The salt flats, composed of gypsum and halite, are moistened by relatively fresh ground water. The result is a salinity gradient that is inverted compared to most salt flat communities with the hypersaline layer at the top and freshwater layers below. We describe and characterize a rich photosynthetically-based microbial ecosystem that is protected from the arid outside environment by a translucent salt crust. Gases collected from sediments under shallow ponds in the sabkha contain methane in concentrations as high as 3400 ppm. The salt crust could preserve biomarkers and other evidence for life in the salt after it dries out. Chloride-filled depressions have been identified on Mars and although surface flow of water is unlikely on Mars today, ground water is possible. Such a near surface system with modern groundwater flowing under ancient salt deposits could be present on Mars and could be accessed by surface rovers
    corecore