270 research outputs found

    LISA Sources in Globular Clusters

    Get PDF
    Globular clusters house a population of compact binaries that will be interesting gravitational wave sources for LISA. We provide estimates for the numbers of sources of several categories and discuss the sensitivity of LISA to detecting these sources. The estimated total number of detectable sources ranges from about 10 to about 1000 with gravitational wave frequencies above 1 mHz. These sources are typically undetectable by any other means and thus offer an opportunity for doing true gravitational-wave astronomy. The detection of these sources would provide information about both binary star evolution and the dynamics of globular clusters.Comment: Contribution to Proceedings of 3rd LISA Symposium 7 pages, added reference

    Modelling Collision Products of Triple-Star Mergers

    Full text link
    In dense stellar clusters, binary-single and binary-binary encounters can ultimately lead to collisions involving two or more stars. A comprehensive survey of multi-star collisions would need to explore an enormous amount of parameter space, but here we focus on a number of representative cases involving low-mass main-sequence stars. Using both Smoothed Particle Hydrodynamics (SPH) calculations and a much faster fluid sorting software package (MMAS), we study scenarios in which a newly formed product from an initial collision collides with a third parent star. By varying the order in which the parent stars collide, as well as the orbital parameters of the collision trajectories, we investigate how factors such as shock heating affect the chemical composition and structure profiles of the collision product. Our simulations and models indicate that the distribution of most chemical elements within the final product is not significantly affected by the order in which the stars collide, the direction of approach of the third parent star, or the periastron separations of the collisions. We find that the sizes of the products, and hence their collisional cross sections for subsequent encounters, are sensitive to the order and geometry of the collisions. For the cases that we consider, the radius of the product formed in the first (single-single star) collision ranges anywhere from roughly 2 to 30 times the sum of the radii of its parent stars. The final product formed in our triple-star collisions can easily be as large or larger than a typical red giant. We therefore expect the collisional cross section of a newly formed product to be greatly enhanced over that of a thermally relaxed star of the same mass.Comment: 20 pages, submitted to MNRA

    Gas disks to gas giants: Simulating the birth of planetary systems

    Full text link
    The ensemble of now more than 250 discovered planetary systems displays a wide range of masses, orbits and, in multiple systems, dynamical interactions. These represent the end point of a complex sequence of events, wherein an entire protostellar disk converts itself into a small number of planetary bodies. Here, we present self-consistent numerical simulations of this process, which produce results in agreement with some of the key trends observed in the properties of the exoplanets. Analogs to our own solar system do not appear to be common, originating from disks near the boundary between barren and (giant) planet-forming.Comment: Science, August 8 issue. Published version and Supporting Online material incl. movies are at http://www.sciencemag.org/cgi/content/abstract/321/5890/81
    • …
    corecore