74 research outputs found

    Cadmium in brown crab Cancer pagurus. Effects of location, season, cooking and multiple physiological factors and consequences for food safety

    Get PDF
    Brown crab Cancer pagurus is appreciated as seafood in several European countries. However, cadmium levels in crabs can be elevated and their consumption may pose a hazard for human health. To assess if cadmium poses a threat to food safety in Norway, crabs were sampled at two different locations along the Norwegian coast: one in the South of Norway and one in the North of Norway. Cadmium levels were determined in different tissues (claw meat, hepatopancreas and inner meat). To highlight specific risk factors for cadmium, the concentration of cadmium was related to different exogenous (location, cooking and season) and physiological (size, sex, moulting stage, gonad maturation stage, condition) factors. The results confirmed previous findings of much higher cadmium levels in brown crab sampled in the North of Norway compared to the South. Cooking of crabs further led to higher concentrations in claw meat. The effect of season on cadmium levels was different in the North and South and no clear patterns could be identified, probably due to a high inter-individual variation in cadmium levels. Size showed a correlation with the total amount of cadmium for crabs in the North indicating an accumulation of cadmium over time; together with a slower growth, this may lead to the higher cadmium levels, observed in the crabs from Northern Norway. The risk connected to cadmium exposure when consuming brown crab mainly depends on the consumption pattern, the parts of the crab consumed and the origin of the crab. Regardless of origin, the consumption of claw meat does not display a consumer health risk. However, the consumption of meals consisting of inner meat only and inner meat of brown crab from Northern Norway may pose a health risk.publishedVersio

    CompareMS2 2.0: An Improved Software for Comparing Tandem Mass Spectrometry Datasets

    Get PDF
    It has long been known that biological species can be identified from mass spectrometry data alone. Ten years ago, we described a method and software tool, compareMS2, for calculating a distance between sets of tandem mass spectra, as routinely collected in proteomics. This method has seen use in species identification and mixture characterization in food and feed products, as well as other applications. Here, we present the first major update of this software, including a new metric, a graphical user interface and additional functionality. The data have been deposited to ProteomeXchange with dataset identifier PXD034932.publishedVersio

    Use of (Q)SAR genotoxicity predictions and fuzzy multicriteria decision-making for priority ranking of ethoxyquin transformation products

    Get PDF
    Ethoxyquin (EQ; 6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline) has been used as an antioxidant in feed for pets and food-producing animals, including farmed fish such as Atlantic salmon. In Europe, the authorization for use of EQ as a feed additive was suspended, due to knowledge gaps concerning the presence and toxicity of EQ transformation products (TPs). Recent analytical studies focusing on the detection of EQ TPs in farmed Atlantic salmon feed and fillets reported the detection of a total of 27 EQ TPs, comprising both known and previously not described EQ TPs. We devised and applied an in silico workflow to rank these EQ TPs according to their genotoxic potential and their occurrence data in Atlantic salmon feed and fillet. Ames genotoxicity predictions were obtained applying a suite of five (quantitative) structure–activity relationship ((Q)SAR) tools, namely VEGA, TEST, LAZAR, Derek Nexus and Sarah Nexus. (Q)SAR Ames genotoxicity predictions were aggregated using fuzzy analytic hierarchy process (fAHP) multicriteria decision-making (MCDM). A priority ranking of EQ TPs was performed based on combining both fAHP ranked (Q)SAR predictions and analytical occurrence data. The applied workflow prioritized four newly identified EQ TPs for further investigation of genotoxicity. The fAHP-based prioritization strategy described here, can easily be applied to other toxicity endpoints and groups of chemicals for priority ranking of compounds of most concern for subsequent experimental and mechanistic toxicology analyses.publishedVersio

    Hepatotoxic pyrrolizidine alkaloids induce DNA damage response in rat liver in a 28-day feeding study

    Get PDF
    Pyrrolizidine alkaloids (PA) are secondary plant metabolites that occur as food and feed contaminants. Acute and subacute PA poisoning can lead to severe liver damage in humans and animals, comprising liver pain, hepatomegaly and the development of ascites due to occlusion of the hepatic sinusoids (veno-occlusive disease). Chronic exposure to low levels of PA can induce liver cirrhosis and liver cancer. However, it is not well understood which transcriptional changes are induced by PA and whether all hepatotoxic PA, regardless of their structure, induce similar responses. Therefore, a 28-day subacute rat feeding study was performed with six structurally different PA heliotrine, echimidine, lasiocarpine, senecionine, senkirkine, and platyphylline, administered at not acutely toxic doses from 0.1 to 3.3 mg/kg body weight. This dose range is relevant for humans, since consumption of contaminated tea may result in doses of ~ 8 µg/kg in adults and cases of PA ingestion by contaminated food was reported for infants with doses up to 3 mg/kg body weight. ALT and AST were not increased in all treatment groups. Whole-genome microarray analyses revealed pronounced effects on gene expression in the high-dose treatment groups resulting in a set of 36 commonly regulated genes. However, platyphylline, the only 1,2-saturated and, therefore, presumably non-hepatotoxic PA, did not induce significant expression changes. Biological functions identified to be affected by high-dose treatments (3.3 mg/kg body weight) comprise cell-cycle regulation associated with DNA damage response. These functions were found to be affected by all analyzed 1,2-unsaturated PA.publishedVersio

    Proteomic analysis of hepatic effects of phenobarbital in mice with humanized liver

    Get PDF
    Activation of the constitutive androstane receptor (CAR) may induce adaptive but also adverse effects in rodent liver, including the induction of drug-metabolizing enzymes, transient hepatocellular proliferation, and promotion of liver tumor growth. Human relevance of CAR-related adverse hepatic effects is controversially debated. Here, we used the chimeric FRG-KO mouse model with livers largely repopulated by human hepatocytes, in order to study human hepatocytes and their response to treatment with the model CAR activator phenobarbital (PB) in vivo. Mice received an intraperitoneal injection with 50 mg/kg body weight PB or saline, and were sacrificed after 72–144 h. Non-repopulated FRG-KO mice were used as additional control. Comprehensive proteomics datasets were generated by merging data obtained by targeted as well as non-targeted proteomics approaches. For the first time, a novel proteomics workflow was established to comparatively analyze the effects of PB on human and murine proteins within one sample. Analysis of merged proteome data sets and bioinformatics data mining revealed comparable responses in murine and human hepatocytes with respect to nuclear receptor activation and induction of xenobiotic metabolism. By contrast, activation of MYC, a key regulator of proliferation, was predicted only for mouse but not human hepatocytes. Analyses of 5-bromo-2′-deoxyuridine incorporation confirmed this finding. In summary, this study for the first time presents a comprehensive proteomic analysis of CAR-dependent effects in human and mouse hepatocytes from humanized FRG-KO mice. The data support the hypothesis that PB does induce adaptive metabolic responses, but not hepatocellular proliferation in human hepatocytes in vivo.publishedVersio

    Dietary selenomethionine reduce mercury tissue levels and modulate methylmercury induced proteomic and transcriptomic alterations in hippocampi of adolescent BALB/c mice

    Get PDF
    Methylmercury (MeHg) is a well-known environmental contaminant, particularly harmful to the developing brain. The main human dietary exposure to MeHg occurs through seafood consumption. However, seafood also contains several nutrients, including selenium, which has been shown to interact with MeHg and potentially ameliorate its toxicity. The aim of this study was to investigate the combined effects of selenium (as selenomethionine; SeMet) and MeHg on mercury accumulation in tissues and the effects concomitant dietary exposure of these compounds exert on the hippocampal proteome and transcriptome in mice. Adolescent male BALB/c mice were exposed to SeMet and two different doses of MeHg through their diet for 11 weeks. Organs, including the brain, were sampled for mercury analyses. Hippocampi were collected and analyzed using proteomics and transcriptomics followed by multi-omics bioinformatics data analysis. The dietary presence of SeMet reduced the amount of mercury in several organs, including the brain. Proteomic and RNA-seq analyses showed that both protein and RNA expression patterns were inversely regulated in mice receiving SeMet together with MeHg compared to MeHg alone. Several pathways, proteins and RNA transcripts involved in conditions such as immune responses and inflammation, oxidative stress, cell plasticity and Alzheimer’s disease were affected inversely by SeMet and MeHg, indicating that SeMet can ameliorate several toxic effects of MeHg in mice.publishedVersio

    Seasonal variations in mercury, cadmium, lead and arsenic species in Norwegian blue mussels (Mytilus edulis L.) – Assessing the influence of biological and environmental factors

    Get PDF
    Blue mussels (Mytilus edulis L.) can accumulate undesirable substances, including the potentially toxic elements (PTEs) cadmium (Cd), mercury, (Hg), lead (Pb), arsenic (As) and As species. In this study, the levels of PTEs and As species were determined in samples of blue mussels to assess the influence of environmental and biological factors, and evaluate the potential risk associated with blue mussels in terms of food and feed safety.publishedVersio

    Effects of seafood consumption on mercury exposure in Norwegian pregnant women: a randomized controlled trial

    Get PDF
    Seafood provides nutrients that are important for optimal development of the unborn child. However, seafood is also a source of contaminants including mercury (Hg) and methylmercury (MeHg) that may have adverse effects on neurodevelopment of the fetus. Humans are predominantly exposed to MeHg through seafood consumption, however, levels of MeHg vary considerably between species.publishedVersio

    Subchronic dietary exposure to ethoxyquin dimer induces microvesicular steatosis in male BALB/c mice

    Get PDF
    The use of the synthetic antioxidant ethoxyquin (6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline; EQ) in animal feed results in the presence of EQ residues and metabolites, including the EQ dimer (1,8′-bi(6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline); EQDM) in animal food products. To investigate the toxicity and dose-response of dietary exposure to EQDM, male BALB/c mice were exposed to one of six dietary doses of EQDM, ranging from 0.015 to 518 mg/kg body weight/day for 90 days. Doses above 10 mg/kg body weight/day affected whole body lipid metabolism resulting in increased liver weights and decreased adipose tissue mass. Metabolomic screening of livers revealed alterations indicating incomplete fatty acid β-oxidation and hepatic oxidative stress. Histopathological evaluation and biochemical analyses of the liver confirmed the development of microvesicular steatosis and activation of the glutathione system. Hepatic protein profiling and pathway analyses suggested that EQDM-induced responses are mediated through activation of CAR/PXR nuclear receptors and induction of a NRF2-mediated oxidative stress response. Based on the development of microvesicular steatosis as the critical endpoint, a Reference Point for dietary EQDM exposure was established at 1.1 mg/kg body weight/day (BMDL10) from benchmark dose modelling. Applying an uncertainty factor of 200, an Acceptable Daily Intake of 0.006 mg EQDM/kg body weight was proposed.publishedVersio

    Safe limits of selenomethionine and selenite supplementation to plant-based Atlantic salmon feeds

    Get PDF
    The use of plant-based feeds warrants the supplementation with selenium (Se) to cover the requirement for Atlantic salmon. Depending on its chemical form, Se is a trace element with a narrow range between requirement and toxicity for most vertebrates. Information on safe upper limit for Atlantic salmon feed supplementation is lacking. Atlantic salmon (147 g) were fed a low natural background organic Se diet (0.45 mg Se kg−1, wet weight (ww)) fortified with 5 graded levels of inorganic sodium selenite (0.45, 5.4, 11.0, 29.4, or 60.0 mg kg−1 ww) or organic selenomethionine (SeMet) (0.45, 6.2, 16.2, 21, or 39 mg kg−1 ww), in triplicate for 3 months. Excess Se supplementation was assessed by targeted biomarkers of Se toxicity pathways (e.g. markers of oxidative stress and lipid metabolism), as well as general adverse effect parameters (plasma biochemistry, hematology, liver histopathology, and growth). Safe limits were set by model-fitting the effect data in a dose-response (lower bound) bench mark dose (BMDL) evaluation. Fish fed the two highest selenite levels showed mortality while fish fed SeMet had no mortality. Fish fed 5.4–11 mg selenite kg−1 feed showed significantly (ANOVA, Tukey's t-test,
    • …
    corecore