92 research outputs found

    Self-consistency of the Excursion Set Approach

    Full text link
    The excursion set approach provides a framework for predicting how the abundance of dark matter halos depends on the initial conditions. A key ingredient of this formalism comes from the physics of halo formation: the specification of a critical overdensity threshold (barrier) which protohalos must exceed if they are to form bound virialized halos at a later time. Another ingredient is statistical, as it requires the specification of the appropriate statistical ensemble over which to average when making predictions. The excursion set approach explicitly averages over all initial positions, thus implicitly assuming that the appropriate ensemble is that associated with randomly chosen positions in space, rather than special positions such as peaks of the initial density field. Since halos are known to collapse around special positions, it is not clear that the physical and statistical assumptions which underlie the excursion set approach are self-consistent. We argue that they are at least for low mass halos, and illustrate by comparing our excursion set predictions with numerical data from the DEUS simulations.Comment: 5 pages, 2 figure

    Toward the utilisation of resources in space: knowledge gaps, open questions, and priorities

    Get PDF
    There are many open science questions in space resource utilisation due to the novelty and relative immaturity of the field. While many potential technologies have been proposed to produce usable resources in space, high confidence, large-scale design is limited by gaps in the knowledge of the local environmental conditions, geology, mineralogy, and regolith characteristics, as well as specific science questions intrinsic to each process. Further, the engineering constraints (e.g. energy, throughput, efficiency etc.) must be incorporated into the design. This work aims to summarise briefly recent activities in the field of space resource utilisation, as well as to identify key knowledge gaps, and to present open science questions. Finally, future exploration priorities to enable the use of space resources are highlighted

    The beneficiation of lunar regolith for space resource utilisation: A review

    Get PDF
    Space Resource Utilisation (SRU) technology will enable further exploration and habitation of space by humankind. The production of oxygen on the Moon is one of the first objectives for SRU; this can be achieved through the thermo-chemical reduction of the lunar regolith. Several techniques, such as hydrogen reduction and molten salt electrolysis, have been proposed. All reduction techniques require a consistent feedstock from the regolith to reliably and consistently produce oxygen. The preparation of this feedstock, known as beneficiation, is a critical intermediate stage of the SRU flowsheet, however it has received little consideration relative to the preceding excavation, and the subsequent oxygen production stage. This review describes the physics of the main beneficiation methods suitable for SRU. Further, we collate and review all of the previous studies on the beneficiation of lunar regolith

    Multicomponent theory of buoyancy instabilities in astrophysical plasma objects: The case of magnetic field perpendicular to gravity

    Full text link
    We develop a general theory of buoyancy instabilities in the electron-ion plasma with the electron heat flux based not upon MHD equations, but using a multicomponent plasma approach in which the momentum equation is solved for each species. We investigate the geometry in which the background magnetic field is perpendicular to the gravity and stratification. General expressions for the perturbed velocities are given without any simplifications. Collisions between electrons and ions are taken into account in the momentum equations in a general form, permitting us to consider both weakly and strongly collisional objects. However, the electron heat flux is assumed to be directed along the magnetic field that implies a weakly collisional case. Using simplifications justified for an investigation of buoyancy instabilities with the electron thermal flux, we derive simple dispersion relations both for collisionless and collisional cases for arbitrary directions of the wave vector. The collisionless dispersion relation considerably differs from that obtained in the MHD framework and is similar to the Schwarzschild's criterion. This difference is connected with simplified assumptions used in the MHD analysis of buoyancy instabilities and with the role of the longitudinal electric field perturbation which is not captured by the ideal MHD equations. The results obtained can be applied to clusters of galaxies and other astrophysical objects.Comment: Accepted for publication in "Astrophysical Journal

    A methodology for tribocharger design optimisation using the Discrete Element Method (DEM)

    Get PDF
    Tribocharger design optimisations presented in the literature are based typically on experimental investigations. While this approach is useful and necessary to evaluate the performance of a design, experimental investigations are limited to studying a finite matrix of parameters. Computational approaches, such as the discrete element method (DEM), offer greater flexibility, however they have not been used previously for tribocharger design optimisation. This work presents a novel approach using the DEM to study the effect of different tribocharger designs on the charging process using particle–wall and particle–particle contact areas as proxies for charge transfer. The bulk sample charge output from the model are compared with bulk charges measured experimentally, showing good agreement. Furthermore, a method to predict approximately the charging behaviour of complex mixtures from linear combinations of the simulation outputs of single species, single size particle samples is presented, demonstrating good agreement

    Experimental investigation of an optimised tribocharger design for space resource utilisation

    Get PDF
    Triboelectric charging and free-fall separation are attractive technologies for lunar mineral beneficiation. Here, an optimised tribocharger design was built and evaluated under terrestrial conditions. The charging behaviour of pure silica and ilmenite were tested using the optimised design, as were mixtures of silica and ilmenite, and samples of lunar regolith simulant JSC-1. Pure silica and ilmenite acquired negative and positive charge, respectively, through contact with the tribocharger. The tribocharger affected significantly the movement of the pure minerals in the electrostatic field. Results from the binary mixtures indicate that ilmenite recovery is independent of initial ilmenite concentration, and can be predicted from the mass distribution of pure ilmenite samples. For JSC-1, the tribocharger was found to increase the density of the material in certain collectors, indicating an upgrading of denser constituents. The optimised tribocharger design has a significant effect on the charging and separation performance

    Numerical simulations of the Warm-Hot Intergalactic Medium

    Get PDF
    In this paper we review the current predictions of numerical simulations for the origin and observability of the warm hot intergalactic medium (WHIM), the diffuse gas that contains up to 50 per cent of the baryons at z~0. During structure formation, gravitational accretion shocks emerging from collapsing regions gradually heat the intergalactic medium (IGM) to temperatures in the range T~10^5-10^7 K. The WHIM is predicted to radiate most of its energy in the ultraviolet (UV) and X-ray bands and to contribute a significant fraction of the soft X-ray background emission. While O VI and C IV absorption systems arising in the cooler fraction of the WHIM with T~10^5-10^5.5 K are seen in FUSE and HST observations, models agree that current X-ray telescopes such as Chandra and XMM-Newton do not have enough sensitivity to detect the hotter WHIM. However, future missions such as Constellation-X and XEUS might be able to detect both emission lines and absorption systems from highly ionised atoms such as O VII, O VIII and Fe XVII.Comment: 18 pages, 5 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 14; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    Summer CO2 evasion from streams and rivers in the Kolyma River basin, north-east Siberia

    Get PDF
    Inland water systems are generally supersaturated in carbon dioxide (CO2) and are increasingly recognized as playing an important role in the global carbon cycle. The Arctic may be particularly important in this respect, given the abundance of inland waters and carbon contained in Arctic soils; however, a lack of trace gas measurements from small streams in the Arctic currently limits this understanding.We investigated the spatial variability of CO2 evasion during the summer low-flow period from streams and rivers in the northern portion of the Kolyma River basin in north-eastern Siberia. To this end, partial pressure of carbon dioxide (pCO2) and gas exchange velocities (k) were measured at a diverse set of streams and rivers to calculate CO2 evasion fluxes. We combined these CO2 evasion estimates with satellite remote sensing and geographic information system techniques to calculate total areal CO2 emissions. Our results show that small streams are substantial sources of atmospheric CO2 owing to high pCO2 and k, despite being a small portion of total inland water surface area. In contrast, large rivers were generally near equilibrium with atmospheric CO2. Extrapolating our findings across the Panteleikha-Ambolikha sub-watersheds demonstrated that small streams play a major role in CO2 evasion, accounting for 86% of the total summer CO2 emissions from inland waters within these two sub-watersheds. Further expansion of these regional CO2 emission estimates across time and space will be critical to accurately quantify and understand the role of Arctic streams and rivers in the global carbon budget
    corecore