92 research outputs found
Self-consistency of the Excursion Set Approach
The excursion set approach provides a framework for predicting how the
abundance of dark matter halos depends on the initial conditions. A key
ingredient of this formalism comes from the physics of halo formation: the
specification of a critical overdensity threshold (barrier) which protohalos
must exceed if they are to form bound virialized halos at a later time. Another
ingredient is statistical, as it requires the specification of the appropriate
statistical ensemble over which to average when making predictions. The
excursion set approach explicitly averages over all initial positions, thus
implicitly assuming that the appropriate ensemble is that associated with
randomly chosen positions in space, rather than special positions such as peaks
of the initial density field. Since halos are known to collapse around special
positions, it is not clear that the physical and statistical assumptions which
underlie the excursion set approach are self-consistent. We argue that they are
at least for low mass halos, and illustrate by comparing our excursion set
predictions with numerical data from the DEUS simulations.Comment: 5 pages, 2 figure
Toward the utilisation of resources in space: knowledge gaps, open questions, and priorities
There are many open science questions in space resource utilisation due to the novelty and relative immaturity of the field. While many potential technologies have been proposed to produce usable resources in space, high confidence, large-scale design is limited by gaps in the knowledge of the local environmental conditions, geology, mineralogy, and regolith characteristics, as well as specific science questions intrinsic to each process. Further, the engineering constraints (e.g. energy, throughput, efficiency etc.) must be incorporated into the design. This work aims to summarise briefly recent activities in the field of space resource utilisation, as well as to identify key knowledge gaps, and to present open science questions. Finally, future exploration priorities to enable the use of space resources are highlighted
The beneficiation of lunar regolith for space resource utilisation: A review
Space Resource Utilisation (SRU) technology will enable further exploration and habitation of space by humankind. The production of oxygen on the Moon is one of the first objectives for SRU; this can be achieved through the thermo-chemical reduction of the lunar regolith. Several techniques, such as hydrogen reduction and molten salt electrolysis, have been proposed. All reduction techniques require a consistent feedstock from the regolith to reliably and consistently produce oxygen. The preparation of this feedstock, known as beneficiation, is a critical intermediate stage of the SRU flowsheet, however it has received little consideration relative to the preceding excavation, and the subsequent oxygen production stage. This review describes the physics of the main beneficiation methods suitable for SRU. Further, we collate and review all of the previous studies on the beneficiation of lunar regolith
Multicomponent theory of buoyancy instabilities in astrophysical plasma objects: The case of magnetic field perpendicular to gravity
We develop a general theory of buoyancy instabilities in the electron-ion
plasma with the electron heat flux based not upon MHD equations, but using a
multicomponent plasma approach in which the momentum equation is solved for
each species. We investigate the geometry in which the background magnetic
field is perpendicular to the gravity and stratification. General expressions
for the perturbed velocities are given without any simplifications. Collisions
between electrons and ions are taken into account in the momentum equations in
a general form, permitting us to consider both weakly and strongly collisional
objects. However, the electron heat flux is assumed to be directed along the
magnetic field that implies a weakly collisional case. Using simplifications
justified for an investigation of buoyancy instabilities with the electron
thermal flux, we derive simple dispersion relations both for collisionless and
collisional cases for arbitrary directions of the wave vector. The
collisionless dispersion relation considerably differs from that obtained in
the MHD framework and is similar to the Schwarzschild's criterion. This
difference is connected with simplified assumptions used in the MHD analysis of
buoyancy instabilities and with the role of the longitudinal electric field
perturbation which is not captured by the ideal MHD equations. The results
obtained can be applied to clusters of galaxies and other astrophysical
objects.Comment: Accepted for publication in "Astrophysical Journal
A methodology for tribocharger design optimisation using the Discrete Element Method (DEM)
Tribocharger design optimisations presented in the literature are based typically on experimental investigations. While this approach is useful and necessary to evaluate the performance of a design, experimental investigations are limited to studying a finite matrix of parameters. Computational approaches, such as the discrete element method (DEM), offer greater flexibility, however they have not been used previously for tribocharger design optimisation. This work presents a novel approach using the DEM to study the effect of different tribocharger designs on the charging process using particle–wall and particle–particle contact areas as proxies for charge transfer. The bulk sample charge output from the model are compared with bulk charges measured experimentally, showing good agreement. Furthermore, a method to predict approximately the charging behaviour of complex mixtures from linear combinations of the simulation outputs of single species, single size particle samples is presented, demonstrating good agreement
Experimental investigation of an optimised tribocharger design for space resource utilisation
Triboelectric charging and free-fall separation are attractive technologies for lunar mineral beneficiation. Here, an optimised tribocharger design was built and evaluated under terrestrial conditions. The charging behaviour of pure silica and ilmenite were tested using the optimised design, as were mixtures of silica and ilmenite, and samples of lunar regolith simulant JSC-1. Pure silica and ilmenite acquired negative and positive charge, respectively, through contact with the tribocharger. The tribocharger affected significantly the movement of the pure minerals in the electrostatic field. Results from the binary mixtures indicate that ilmenite recovery is independent of initial ilmenite concentration, and can be predicted from the mass distribution of pure ilmenite samples. For JSC-1, the tribocharger was found to increase the density of the material in certain collectors, indicating an upgrading of denser constituents. The optimised tribocharger design has a significant effect on the charging and separation performance
Recommended from our members
A universal framework for Space Resource Utilisation (SRU)
Space Resource Utilisation (SRU) or In Situ Resource Utilisation (ISRU) is the use of natural resources from the Moon, Mars and other bodies for use in situ or elsewhere in the Solar System. The implementation of SRU technologies will provide the breakthrough for humankind to explore further into space. A range of extraction processes to produce usable resources have been proposed, such as oxygen production from lunar regolith, extraction of lunar ice and construction of habitation by 3D printing. Practical and successful implementation of SRU requires that all the stages of the process flowsheet (excavation, beneficiation and extraction) are considered. This requires a complete ‘mine-to-market’ type approach, analogous to that of terrestrial mineral extraction.
One of the key challenges is the unique cross-disciplinary nature of SRU; it integrates space systems, robotics, materials handling and beneficiation, and chemical process engineering. This is underpinned by knowledge of the lunar or planetary geology, including mineralogy, physical characteristics, and the variability in local materials. Combining such diverse fields in a coordinated way requires the use of a universal framework. The framework will enable integration of operations and comparison of technologies, and will define a global terminology to be used across all fields. In this paper, a universal SRU flowsheet and terminology are described, and a matrix approach to describing regolith characteristics specifically for SRU is proposed. This is the first time that such an approach has been taken to unify this rapidly-developing sector
Numerical simulations of the Warm-Hot Intergalactic Medium
In this paper we review the current predictions of numerical simulations for
the origin and observability of the warm hot intergalactic medium (WHIM), the
diffuse gas that contains up to 50 per cent of the baryons at z~0. During
structure formation, gravitational accretion shocks emerging from collapsing
regions gradually heat the intergalactic medium (IGM) to temperatures in the
range T~10^5-10^7 K. The WHIM is predicted to radiate most of its energy in the
ultraviolet (UV) and X-ray bands and to contribute a significant fraction of
the soft X-ray background emission. While O VI and C IV absorption systems
arising in the cooler fraction of the WHIM with T~10^5-10^5.5 K are seen in
FUSE and HST observations, models agree that current X-ray telescopes such as
Chandra and XMM-Newton do not have enough sensitivity to detect the hotter
WHIM. However, future missions such as Constellation-X and XEUS might be able
to detect both emission lines and absorption systems from highly ionised atoms
such as O VII, O VIII and Fe XVII.Comment: 18 pages, 5 figures, accepted for publication in Space Science
Reviews, special issue "Clusters of galaxies: beyond the thermal view",
Editor J.S. Kaastra, Chapter 14; work done by an international team at the
International Space Science Institute (ISSI), Bern, organised by J.S.
Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
Summer CO2 evasion from streams and rivers in the Kolyma River basin, north-east Siberia
Inland water systems are generally supersaturated in carbon dioxide (CO2) and are increasingly recognized as playing an important role in the global carbon cycle. The Arctic may be particularly important in this respect, given the abundance of inland waters and carbon contained in Arctic soils; however, a lack of trace gas measurements from small streams in the Arctic currently limits this understanding.We investigated the spatial variability of CO2 evasion during the summer low-flow period from streams and rivers in the northern portion of the Kolyma River basin in north-eastern Siberia. To this end, partial pressure of carbon dioxide (pCO2) and gas exchange velocities (k) were measured at a diverse set of streams and rivers to calculate CO2 evasion fluxes.
We combined these CO2 evasion estimates with satellite remote sensing and geographic information system techniques to calculate total areal CO2 emissions. Our results show that small streams are substantial sources of atmospheric CO2 owing to high pCO2 and k, despite being a small portion of total inland water surface area. In contrast, large rivers were generally near equilibrium with atmospheric CO2. Extrapolating our findings across the Panteleikha-Ambolikha sub-watersheds demonstrated that small streams play a major role in CO2 evasion, accounting for 86% of the total summer CO2 emissions from inland waters within these two sub-watersheds. Further expansion of these regional CO2 emission estimates across time and space will be critical to accurately quantify and understand the role of Arctic streams and rivers in the global carbon budget
- …