140 research outputs found

    Puzzling Over the Pneumococcal Pangenome

    Get PDF
    The Gram positive bacterium Streptococcus pneumoniae (pneumococcus) is a major human pathogen. It is a common colonizer of the human host, and in the nasopharynx, sinus, and middle ear it survives as a biofilm. This mode of growth is optimal for multi-strain colonization and genetic exchange. Over the last decades, the far-reaching use of antibiotics and the widespread implementation of pneumococcal multivalent conjugate vaccines have posed considerable selective pressure on pneumococci. This scenario provides an exceptional opportunity to study the evolution of the pangenome of a clinically important bacterium, and has the potential to serve as a case study for other species. The goal of this review is to highlight key findings in the studies of pneumococcal genomic diversity and plasticity

    The upper respiratory tract microbiota of healthy adults is affected by Streptococcus pneumoniae carriage, smoking habits, and contact with children.

    Get PDF
    BACKGROUND The microbiota of the upper respiratory tract is increasingly recognized as a gatekeeper of respiratory health. Despite this, the microbiota of healthy adults remains understudied. To address this gap, we investigated the composition of the nasopharyngeal and oropharyngeal microbiota of healthy adults, focusing on the effect of Streptococcus pneumoniae carriage, smoking habits, and contact with children. RESULTS Differential abundance analysis indicated that the microbiota of the oropharynx was significantly different from that of the nasopharynx (P < 0.001) and highly discriminated by a balance between the classes Negativicutes and Bacilli (AUC of 0.979). Moreover, the oropharynx was associated with a more homogeneous microbiota across individuals, with just two vs. five clusters identified in the nasopharynx. We observed a shift in the nasopharyngeal microbiota of carriers vs. noncarriers with an increased relative abundance of Streptococcus, which summed up to 30% vs. 10% in noncarriers and was not mirrored in the oropharynx. The oropharyngeal microbiota of smokers had a lower diversity than the microbiota of nonsmokers, while no differences were observed in the nasopharyngeal microbiota. In particular, the microbiota of smokers, compared with nonsmokers, was enriched (on average 16-fold) in potential pathogenic taxa involved in periodontal diseases of the genera Bacillus and Burkholderia previously identified in metagenomic studies of cigarettes. The microbiota of adults with contact with children resembled the microbiota of children. Specifically, the nasopharyngeal microbiota of these adults had, on average, an eightfold increase in relative abundance in Streptococcus sp., Moraxella catarrhalis, and Haemophilus influenzae, pathobionts known to colonize the children's upper respiratory tract, and a fourfold decrease in Staphylococcus aureus and Staphylococcus lugdunensis. CONCLUSIONS Our study showed that, in adults, the presence of S. pneumoniae in the nasopharynx is associated with a shift in the microbiota and dominance of the Streptococcus genus. Furthermore, we observed that smoking habits are associated with an increase in bacterial genera commonly linked to periodontal diseases. Interestingly, our research also revealed that adults who have regular contact with children have a microbiota enriched in pathobionts frequently carried by children. These findings collectively contribute to a deeper understanding of how various factors influence the upper respiratory tract microbiota in adults. Video Abstract

    Re-evaluation of Streptococcus pneumoniae carriage in Portuguese elderly by qPCR increases carriage estimates and unveils an expanded pool of serotypes

    Get PDF
    Streptococcus pneumoniae (pneumococcus) is a leading cause of infections worldwide. Disease is preceded by asymptomatic colonization of the upper respiratory tract. Classical culture-based methods (CCBM) suggest that colonization in the elderly is <5%. Recently, use of qPCR has challenged these observations. We estimated pneumococcal carriage prevalence and serotypes among Portuguese elderly using qPCR and compared results with those obtained by CCBM. Nasopharyngeal and oropharyngeal paired samples (599 each) of individuals over 60 years living in nursing (n = 299) or family (n = 300) homes were screened for the presence of pneumococci by qPCR targeting lytA and piaB. Positive samples were molecular serotyped. Use of qPCR improved detection of pneumococci in oropharyngeal samples compared to CCBM: from 0.7% to 10.4% (p < 0.001) in the nursing home collection, and from 0.3% to 5.0% (p < 0.001) in the family home collection. No significant differences were observed between both methods in nasopharyngeal samples (5.4% vs. 5.4% in the nursing homes; and 4.3% vs. 4.7% in the family homes). Twenty-one serotypes/serogroups were detected by qPCR compared to 14 by CCBM. In conclusion, use of qPCR suggests that pneumococcal carriage in Portuguese elderly is approximately 10%, and unveiled a large pool of serotypes. These results are important to understand progression to disease and impact of pneumococcal vaccines in the elderly.publishersversionpublishe

    Split-BOLFI for for misspecification-robust likelihood free inference in high dimensions

    Full text link
    Likelihood-free inference for simulator-based statistical models has recently grown rapidly from its infancy to a useful tool for practitioners. However, models with more than a very small number of parameters as the target of inference have remained an enigma, in particular for the approximate Bayesian computation (ABC) community. To advance the possibilities for performing likelihood-free inference in high-dimensional parameter spaces, here we introduce an extension of the popular Bayesian optimisation based approach to approximate discrepancy functions in a probabilistic manner which lends itself to an efficient exploration of the parameter space. Our method achieves computational scalability by using separate acquisition procedures for the discrepancies defined for different parameters. These efficient high-dimensional simulation acquisitions are combined with exponentiated loss-likelihoods to provide a misspecification-robust characterisation of the marginal posterior distribution for all model parameters. The method successfully performs computationally efficient inference in a 100-dimensional space on canonical examples and compares favourably to existing Copula-ABC methods. We further illustrate the potential of this approach by fitting a bacterial transmission dynamics model to daycare centre data, which provides biologically coherent results on the strain competition in a 30-dimensional parameter space

    Multiple-Locus Variable Number Tandem Repeat Analysis for Streptococcus pneumoniae: Comparison with PFGE and MLST

    Get PDF
    In the era of pneumococcal conjugate vaccines, surveillance of pneumococcal disease and carriage remains of utmost importance as important changes may occur in the population. To monitor these alterations reliable genotyping methods are required for large-scale applications. We introduced a high throughput multiple-locus variable number tandem repeat analysis (MLVA) and compared this method with pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). The MLVA described here is based on 8 BOX loci that are amplified in two multiplex PCRs. The labeled PCR products are sized on an automated DNA sequencer to accurately determine the number of tandem repeats. The composite of the number of repeats of the BOX loci makes up a numerical profile that is used for identification and clustering. In this study, MLVA was performed on 263 carriage isolates that were previously characterized by MLST and PFGE. MLVA, MLST and PFGE (cut-off of 80%) yielded 164, 120, and 87 types, respectively. The three typing methods had Simpson's diversity indices of 98.5% or higher. Congruence between MLST and MLVA was high. The Wallace of MLVA to MLST was 0.874, meaning that if two strains had the same MLVA type they had an 88% chance of having the same MLST type. Furthermore, the Wallace of MLVA to clonal complex of MLST was even higher: 99.5%. For some isolates belonging to a single MLST clonal complex although displaying different serotypes, MLVA was more discriminatory, generating groups according to serotype or serogroup. Overall, MLVA is a promising genotyping method that is easy to perform and a relatively cheap alternative to PFGE and MLST. In the companion paper published simultaneously in this issue we applied the MLVA to assess the pneumococcal population structure of isolates causing invasive disease in the Netherlands before the introduction of the 7-valent conjugate vaccine

    Haemophilus influenzae Carriage among Healthy Children in Portugal, 2015-2019

    Get PDF
    This article belongs to the Special Issue Haemophilus influenzae: New Insights in Epidemiology of Disease.Haemophilus influenzae is an important cause of mucosal and invasive infections and a common colonizer of the upper respiratory tract. As there are no recent data on H. influenzae carriage in Portugal, we aimed to characterize carriage samples and investigate possible parallelisms with disease isolates. Between 2016–2019, 1524 nasopharyngeal samples were obtained from children (0–6 years) attending day-care. H. influenzae were serotyped and screened for β-lactamase production. Strains producing β-lactamase and/or those that were encapsulated were further characterized by antibiotype; encapsulated strains were also investigated for MLST and the presence of antimicrobial resistance and virulence genes (extracted from whole genome sequencing). The overall carriage rate was 84.1%. Most isolates (96.7%) were nonencapsulated. Encapsulated strains were of serotypes f (1.8%), e (1.1%), a (0.3%), and b (0.1%). MLST showed clonality within serotypes. Although the lineages were the same as those that were described among disease isolates, colonization isolates had fewer virulence determinants. Overall, 7.5% of the isolates were β-lactamase positive; one isolate had blaTEM-82, which has not been previously described in H. influenzae. A single isolate, which was identified as H. parainfluenzae, had an incomplete f-like cap locus. In conclusion, circulation of serotype b is residual. The few encapsulated strains are genetically related to disease-causing isolates. Thus, surveillance of H. influenzae carriage should be maintained.This work was partially supported by projects LISBOA-01-0145-FEDER (Microbiologia Molecular, Estrutural e Celular, funded by FEDER through COMPETE2020—Programa Operacional Competitividade e Internacionalização), LISBOA-01-0145-FEDER-016417 (ONEIDA co-funded by Fundos Europeus Estruturais e de Investimento, Programa Operacional Regional Lisboa 2020 and Fundação para a Ciência e a Tecnologia (FCT)), WI230921 from Pfizer Portugal (to RSL), and National Institute of Health, Lisbon, Portugal. CC was supported by grant from Fundação para a Ciência e a Tecnologia, Portugal.info:eu-repo/semantics/publishedVersio

    Decrease in Pneumococcal Co-Colonization following Vaccination with the Seven-Valent Pneumococcal Conjugate Vaccine

    Get PDF
    Understanding the epidemiology of pneumococcal co-colonization is important for monitoring vaccine effectiveness and the occurrence of horizontal gene transfer between pneumococcal strains. In this study we aimed to evaluate the impact of the seven-valent pneumococcal conjugate vaccine (PCV7) on pneumococcal co-colonization among Portuguese children. Nasopharyngeal samples from children up to 6 years old yielding a pneumococcal culture were clustered into three groups: pre-vaccine era (n = 173), unvaccinated children of the vaccine era (n = 169), and fully vaccinated children (4 doses; n = 150). Co-colonization, serotype identification, and relative serotype abundance were detected by analysis of DNA of the total bacterial growth of the primary culture plate using the plyNCR-RFLP method and a molecular serotyping microarray-based strategy. The plyNCR-RFLP method detected an overall co-colonization rate of 20.1%. Microarray analysis confirmed the plyNCR-RFLP results. Vaccination status was the only factor found to be significantly associated with co-colonization: co-colonization rates were significantly lower (p = 0.004; Fisher's exact test) among fully vaccinated children (8.0%) than among children from the pre-PCV7 era (17.3%) or unvaccinated children of the PCV7 era (18.3%). In the PCV7 era there were significantly less non-vaccine type (NVT) co-colonization events than would be expected based on the NVT distribution observed in the pre-PCV7 era (p = 0.024). In conclusion, vaccination with PCV7 resulted in a lower co-colonization rate due to an asymmetric distribution between NVTs found in single and co-colonized samples. We propose that some NVTs prevalent in the PCV7 era are more competitive than others, hampering their co-existence in the same niche. This result may have important implications since a decrease in co-colonization events is expected to translate in decreased opportunities for horizontal gene transfer, hindering pneumococcal evolution events such as acquisition of antibiotic resistance determinants or capsular switch. This might represent a novel potential benefit of conjugate vaccines

    Variable recombination dynamics during the emergence, transmission and ‘disarming’ of a multidrug-resistant pneumococcal clone

    Get PDF
    Background: Pneumococcal β-lactam resistance was first detected in Iceland in the late 1980s, and subsequently peaked at almost 25% of clinical isolates in the mid-1990s largely due to the spread of the internationally-disseminated multidrug-resistant PMEN2 (or Spain6B-2) clone of Streptococcus pneumoniae. Results: Whole genome sequencing of an international collection of 189 isolates estimated that PMEN2 emerged around the late 1960s, developing resistance through multiple homologous recombinations and the acquisition of a Tn5253-type integrative and conjugative element (ICE). Two distinct clades entered Iceland in the 1980s, one of which had acquired a macrolide resistance cassette and was estimated to have risen sharply in its prevalence by coalescent analysis. Transmission within the island appeared to mainly emanate from Reykjavík and the Southern Peninsular, with evolution of the bacteria effectively clonal, mainly due to a prophage disrupting a gene necessary for genetic transformation in many isolates. A subsequent decline in PMEN2’s prevalence in Iceland coincided with a nationwide campaign that reduced dispensing of antibiotics to children in an attempt to limit its spread. Specific mutations causing inactivation or loss of ICE-borne resistance genes were identified from the genome sequences of isolates that reverted to drug susceptible phenotypes around this time. Phylogenetic analysis revealed some of these occurred on multiple occasions in parallel, suggesting they may have been at least temporarily advantageous. However, alteration of ‘core’ sequences associated with resistance was precluded by the absence of any substantial homologous recombination events. Conclusions: PMEN2’s clonal evolution was successful over the short-term in a limited geographical region, but its inability to alter major antigens or ‘core’ gene sequences associated with resistance may have prevented persistence over longer timespans

    Evidence for Soft Selective Sweeps in the Evolution of Pneumococcal Multidrug Resistance and Vaccine Escape

    Get PDF
    The multidrug-resistant Streptococcus pneumoniae Taiwan19F-14, or PMEN14, clone was first observed with a 19F serotype, which is targeted by the heptavalent polysaccharide conjugate vaccine (PCV7). However, “vaccine escape” PMEN14 isolates with a 19A serotype became an increasingly important cause of disease post-PCV7. Whole genome sequencing was used to characterize the recent evolution of 173 pneumococci of, or related to, PMEN14. This suggested that PMEN14 is a single lineage that originated in the late 1980s in parallel with the acquisition of multiple resistances by close relatives. One of the four detected serotype switches to 19A generated representatives of the sequence type (ST) 320 isolates that have been highly successful post-PCV7. A second produced an ST236 19A genotype with reduced resistance to β-lactams owing to alteration of pbp1a and pbp2x sequences through the same recombination that caused the change in serotype. A third, which generated a mosaic capsule biosynthesis locus, resulted in serotype 19A ST271 isolates. The rapid diversification through homologous recombination seen in the global collection was similarly observed in the absence of vaccination in a set of isolates from the Maela refugee camp in Thailand, a collection that also allowed variation to be observed within carriage through longitudinal sampling. This suggests that some pneumococcal genotypes generate a pool of standing variation that is sufficiently extensive to result in “soft” selective sweeps: The emergence of multiple mutants in parallel upon a change in selection pressure, such as vaccine introduction. The subsequent competition between these mutants makes this phenomenon difficult to detect without deep sampling of individual lineages
    corecore