936 research outputs found

    Microscopic dynamics of a phase transition: equilibrium vs out-of-equilibrium regime

    Get PDF
    We present for the first time to the nuclear physics community the Hamiltonian Mean Field (HMF) model. The model can be solved analytically in the canonical ensemble and shows a second-order phase transition in the thermodynamic limit. Numerical microcanonical simulations show interesting features in the out-of-equilibrium regime: in particular the model has a negative specific heat. The potential relevance for nuclear multifragmentation is discussed.Comment: 9 pages, Latex, 4 figures included, invited talk to the Int. Conf. CRIS2000 on "Phase transitions in strong interactions: status and perspectives", Acicastello (Italy) May 22-26 2000, submitted to Nucl Phys.

    Chaos in the thermodynamic limit

    Full text link
    We study chaos in the Hamiltonian Mean Field model (HMF), a system with many degrees of freedom in which NN classical rotators are fully coupled. We review the most important results on the dynamics and the thermodynamics of the HMF, and in particular we focus on the chaotic properties.We study the Lyapunov exponents and the Kolmogorov--Sinai entropy, namely their dependence on the number of degrees of freedom and on energy density, both for the ferromagnetic and the antiferromagnetic case.Comment: 10 pages, Latex, 4 figures included, invited talk to the Int. school/Conf. on "Let's face Chaos Through Nonlinear Dynamics" Maribor (Slovenia) 27 june - 11 july 1999, submitted to Prog. Theor. Physics supp

    Study on the response of IFMIF fission chambers to mixed neutron-gamma fields: PH-2 experimental tests

    Full text link
    The engineering design of fissionchambers as on-line radiation detectors for IFMIF is being performed in the framework of the IFMIF-EVEDA works. In this paper the results of the experiments performed in the BR2 reactor during the phase-2 of the foreseen validation activities are addressed. Two detectors have been tested in a mixedneutron-gamma field with high neutron fluence and gamma absorbed dose rates, comparable with the expected values in the HFTM in IFMIF. Since the neutron spectra in all BR2 channels are dominated by the thermal neutron component, the detectors have been surrounded by a cylindrical gadolinium screen to cut the thermal neutron component, in order to get a more representative test for IFMIF conditions. The integrated gamma absorbed dose was about 4 × 1010 Gy and the fast neutron fluence (E > 0.1 MeV) 4 × 1020 n/cm2. The fissionchambers were calibrated in three BR2 channels with different neutron-to-gamma ratio, and the long-term evolution of the signals was studied and compared with theoretical calculation

    Quantum Monte Carlo calculation of the zero-temperature phase diagram of the two-component fermionic hard-core gas in two dimensions

    Get PDF
    Motivated by potential realizations in cold-atom or cold-molecule systems, we have performed quantum Monte Carlo simulations of two-component gases of fermions in two dimensions with hard-core interactions. We have determined the gross features of the zero-temperature phase diagram by investigating the relative stabilities of paramagnetic and ferromagnetic fluids and crystals. We have also examined the effect of including a pairwise, long-range r^3 potential between the particles. Our most important conclusion is that there is no region of stability for a ferromagnetic fluid phase, even if the long-range interaction is present. We also present results for the pair-correlation function, static structure factor, and momentum density of two-dimensional hard-core fluids

    Widening use of dexamethasone implant for the treatment of macular edema

    Get PDF
    Sustained-release intravitreal 0.7 mg dexamethasone (DEX) implant is approved in Europe for the treatment of macular edema related to diabetic retinopathy, branch retinal vein occlusion, central retinal vein occlusion, and non-infectious uveitis. The implant is formulated in a biodegradable copolymer to release the active ingredient within the vitreous chamber for up to 6 months after an intravitreal injection, allowing a prolonged interval of efficacy between injections with a good safety profile. Various other ocular pathologies with inflammatory etio­pathogeneses associated with macular edema have been treated by DEX implant, including neovascular age-related macular degeneration, Irvine–Gass syndrome, vasoproliferative retinal tumors, retinal telangiectasia, Coats’ disease, radiation maculopathy, retinitis pigmentosa, and macular edema secondary to scleral buckling and pars plana vitrectomy. We undertook a review to provide a comprehensive collection of all of the diseases that benefit from the use of the sustained-release DEX implant, alone or in combination with concomitant therapies. A MEDLINE search revealed lack of randomized controlled trials related to these indications. Therefore we included and analyzed all available studies (retrospective and prospective, com­parative and non-comparative, randomized and nonrandomized, single center and multicenter, and case report). There are reports in the literature of the use of DEX implant across a range of macular edema-related pathologies, with their clinical experience supporting the use of DEX implant on a case-by-case basis with the aim of improving patient outcomes in many macular pathologies. As many of the reported macular pathologies are difficult to treat, a new treat­ment option that has a beneficial influence on the clinical course of the disease may be useful in clinical practice

    Analysis of Self-Organized Criticality in the Olami-Feder-Christensen model and in real earthquakes

    Full text link
    We perform a new analysis on the dissipative Olami-Feder-Christensen model on a small world topology considering avalanche size differences. We show that when criticality appears the Probability Density Functions (PDFs) for the avalanche size differences at different times have fat tails with a q-Gaussian shape. This behaviour does not depend on the time interval adopted and is found also when considering energy differences between real earthquakes. Such a result can be analytically understood if the sizes (released energies) of the avalanches (earthquakes) have no correlations. Our findings support the hypothesis that a self-organized criticality mechanism with long-range interactions is at the origin of seismic events and indicate that it is not possible to predict the magnitude of the next earthquake knowing those of the previous ones.Comment: 5 pages, 3 figures. New version accepted for publication on PRE Rapid Communication
    corecore